954 resultados para convexity theorem
Resumo:
OBJETIVO: Investigar alterações da margem palpebral em portadores de ectrópio. MÉTODOS: Foi feito estudo observacional, do qual participaram 53 portadores de ectrópio palpebral e 25 portadores de dermatocálase (grupo controle), estudando-se, a partir de imagens digitais, a posição dos cílios e a presença de inflamações na margem palpebral. Os dados foram submetidos a análise estatística. RESULTADOS: Os portadores de ectrópio apresentaram com maior freqüência diminuição do número de cílios, perda da convexidade, triquíase e distiquíase quando comparados aos indivíduos do grupo controle. CONCLUSÃO: O portador de ectrópio possui alterações da margem palpebral provavelmente decorrentes do processo inflamatório crônico que ocorre na região.
Resumo:
OBJETIVO: o presente estudo cefalométrico longitudinal investigou as alterações espontâneas ocorridas em crianças com má oclusão Classe II, divisão 1, Padrão II. MÉTODOS: foram selecionadas 40 crianças, 20 meninos e 20 meninas, distribuídas na faixa etária compreendida entre 6 e 14 anos de idade. Para avaliar o comportamento das bases apicais, dos incisivos e do tecido mole, as seguintes grandezas cefalométricas foram mensuradas: SN.Ba, SNA, SNB, SND, SN.Pog, ANB, NAP, SN.PP, SN.GoGn, SN.Gn, Ar.Go.Gn, 1.PP, 1.NA, 1.SN, IMPA e ANL. As seguintes grandezas alcançaram significância estatística com o crescimento: SNB, SND,SN.Pog,ANB,NAP,SN.GoGn,SN.Gn,Ar.Go.Gn e IMPA. RESULTADOS: os resultados demonstraram que as principais alterações quantitativas registradas estavam relacionadas com o crescimento mandibular,independentemente do gênero. A mandíbula deslocou-se para frente, com tendência de rotação no sentido anti-horário e com conseqüente redução nos ângulos de convexidade facial. No entanto, as oscilações quantitativas nas grandezas cefalométricas não foram suficientes para mudar a morfologia dentofacial ao longo do período de acompanhamento. CONCLUSÃO: conclui-se, portanto, que a morfologia facial é definida precocemente e é mantida, configurando o determinismo genético na determinação do arcabouço esquelético.
Resumo:
We discuss an old theorem of Obrechkoff and some of its applications. Some curious historical facts around this theorem are presented. We make an attempt to look at some known results on connection coefficients, zeros and Wronskians of orthogonal polynomials from the perspective of Obrechkoff's theorem. Necessary conditions for the positivity of the connection coefficients of two families of orthogonal polynomials are provided. Inequalities between the kth zero of an orthogonal polynomial p(n)(x) and the largest (smallest) zero of another orthogonal polynomial q(n)(x) are given in terms of the signs of the connection coefficients of the families {p(n)(x)} and {q(n)(x)}, An inequality between the largest zeros of the Jacobi polynomials P-n((a,b)) (x) and P-n((alpha,beta)) (x) is also established. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Let 0
Resumo:
Denote by x(n,k)(alpha, beta) and x(n,k) (lambda) = x(n,k) (lambda - 1/2, lambda - 1/2) the zeros, in decreasing order, of the Jacobi polynomial P-n((alpha, beta))(x) and of the ultraspherical (Gegenbauer) polynomial C-n(lambda)(x), respectively. The monotonicity of x(n,k)(alpha, beta) as functions of a and beta, alpha, beta > - 1, is investigated. Necessary conditions such that the zeros of P-n((a, b)) (x) are smaller (greater) than the zeros of P-n((alpha, beta))(x) are provided. A. Markov proved that x(n,k) (a, b) < x(n,k)(α, β) (x(n,k)(a, b) > x(n,k)(alpha, beta)) for every n is an element of N and each k, 1 less than or equal to k less than or equal to n if a > alpha and b < β (a < alpha and b > beta). We prove the converse statement of Markov's theorem. The question of how large the function could be such that the products f(n)(lambda) x(n,k)(lambda), k = 1,..., [n/2] are increasing functions of lambda, for lambda > - 1/2, is also discussed. Elbert and Siafarikas proved that f(n)(lambda) = (lambda + (2n(2) + 1)/ (4n + 2))(1/2) obeys this property. We establish the sharpness of their result. (C) 2002 Elsevier B.V. (USA).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho é motivado pelo resultado de Berge, que é uma generalização do teorema de Tutte o qual expressamos na forma: Dado o grafo G de ordem |V(G)| eni(G) o número de arestas em um emparelhamento máximo, existe um conjunto X de vértices de G tal que |V(G)|+|X| - ômega(G\X) - 2n(G)=0, onde ômega(G\X) é o número de componentes de ordem ímpar de G\X. Tal expressão chamamos a equação de Tutte-Berge associada de G, e escrevemos simplesmente T(G; X)=0. Os grafos podem ser classificados a partir das soluções da equação de Tutte-Berge. Um grafo G é chamado imersível se, e somente se, T(G; X)=0 possui pelo menos um conjunto solução não vazio de vértices, e G é denominado não imersível se, e somente se, o conjunto vazio é a única solução de T(G; X)=0. O resultado principal deste artigo é a caracterização de grafos imersíveis pelos conjuntos antifatores completos, além disso, provamos que os grafos fatoráveis estão contidos na classe dos imersíveis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The behavior of the non-perturbative parts of the isovector-vector and isovector and isosinglet axial-vector correlators at Euclidean momenta is studied in the framework of a covariant chiral quark model with non-local quark-quark interactions. The gauge covariance is ensured with the help of the P-exponents, with the corresponding modification of the quark-current interaction vertices taken into account. The low- and high-momentum behavior of the correlators is compared with the chiral perturbation theory and with the QCD operator product expansion, respectively. The V-A combination of the correlators obtained in the model reproduces quantitatively the ALEPH and OPAL data on hadronic tau decays, transformed into the Euclidean domain via dispersion relations. The predictions for the electromagnetic pi(+/-) - pi(0) mass difference and for the pion electric polarizability are also in agreement with the experimental values. The topological susceptibility of the vacuum is evaluated as a function of the momentum, and its first moment is predicted to be chi'(0) approximate to (50 MeV)(2). In addition, the fulfillment of the Crewther theorem is demonstrated.
Resumo:
We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrodinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.
Resumo:
A self-contained discussion of integral equations of scattering is presented in the case of centrally symmetric potentials in one dimension, which will facilitate the understanding of more complex scattering integral equations in two and three dimensions. The present discussion illustrates in a simple fashion the concept of partial-wave decomposition, Green's function, Lippmann-Schwinger integral equations of scattering for wave function and transition operator, optical theorem, and unitarity relation. We illustrate the present approach with a Dirac delta potential. (C) 2001 American Association of Physics Teachers.
Resumo:
We discuss the phi(6) theory defined in D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of the composite operator (Cornwall, Jackiw, and Tomboulis) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
We discuss the phi(6) theory defined in D = 2 + 1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of composite operator (CJT) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.