943 resultados para content delivery
Resumo:
Minced fish is a significant component of a number of frozen fishery products like fish fingers, cakes and patties. Predominately minced fish is produced from gadoid species (Alaska pollack, cod, saithe, hake and others) possessing the enzyme trimethylamine oxide demethylase (TMAOase, E.C. 4.1.2.32) (Rehbein and Schreiber 1984). TMAOase catalyses the degradation of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA), preferentially during frozen storage of products (Hultin 1992). In most gadoid species light muscle contains only low activity of TMAOase, the activity of red muscle and bellyflaps being somewhat higher. In contrast, the TMAOase activity in blood, kidney and other tissues, residues of which may contaminate minced fish flesh, may be higher for several orders of magnitude (Rehbein and Schreiber 1984).
Resumo:
The roles of the folate receptor and an anion carrier in the uptake of 5- methyltetrahydrofolate (5-MeH_4folate) were studied in cultured human (KB) cells using radioactive 5-MeH_4folate. Binding of the 5-MeH_4folate was inhibited by folic acid, but not by probenecid, an anion carrier inhibitor. The internalization of 5-MeH_4folate was inhibited by low temperature, folic acid, probenecid and methotrexate. Prolonged incubation of cells in the presence of high concentrations of probenecid appeared to inhibit endocytosis of folatereceptors as well as the anion carrier. The V_(max) and K_M values for the carrier were 8.65 ± 0.55 pmol/min/mg cell protein and 3.74 ± 0.54µM, respectively. The transport of 5-MeH4folate was competitively inhibited by folic acid, probenecid and methotrexate. The carrier dissociation constants for folic acid, probenecid and methotreate were 641 µM, 2.23 mM and 13.8 µM, respectively. Kinetic analysis suggests that 5-MeH_4folate at physiological concentration is transported through an anion carrier with the characteristics of the reduced-folate carrier after 5-MeH_4folate is endocytosed by folate receptors in KB cells. Our data with KB cells suggest that folate receptors and probenecid-sensitive carriers work in tandem to transport 5-MeH_4folate to the cytoplasm of cells, based upon the assumption that 1 mM probenecid does not interfere with the acidification of the vesicle where the folate receptors are endocytosed.
Oligodeoxynucleotides designed to hybridize to specific mRNA sequences (antisense oligonucleotides) or double stranded DNA sequences have been used to inhibit the synthesis of a number of cellular and viral proteins (Crooke, S. T. (1993) FASEB J. 7, 533-539; Carter, G. and Lemoine, N. R. (1993) Br. J. Cacer 67, 869-876; Stein, C. A. and cohen, J. S. (1988) Cancer Res. 48, 2659-2668). However, the distribution of the delivered oligonucleotides in the cell, i.e., in the cytoplasm or in the nucleus has not been clearly defined. We studied the kinetics of oligonucleotide transport into the cell nucleus using reconstituted cell nuclei as a model system. We present evidences here that oligonucleotides can freely diffuse into reconstituted nuclei. Our results are consistent with the reports by Leonetti et al. (Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2702-2706, April 1991), which were published while we were carrying this research independently. We also investigated whether a synthetic nuclear localization signal (NLS) peptide of SV40 T antigen could be used for the nuclear targeting of oligonucleotides. We synthesized a nuclear localization signal peptide-conjugated oligonucleotide to see if a nuclear localization signal peptide can enhance the uptake of oligonucleotides into reconstituted nuclei of Xenopus. Uptake of the NLS peptide-conjugated oligonucleotide was comparable to the control oligonucleotide at similar concentrations, suggesting that the NLS signal peptide does not significantly enhance the nuclear accumulation of oligonucleotides. This result is probably due to the small size of the oligonucleotide.
Resumo:
A dissertação trata do acesso aos serviços de alta complexidade, particularmente os exames diagnósticos e complementares, estudado entre usuários de planos de saúde privados que buscam atendimento e diagnóstico especializado. Desde a década de 80 o usuário do sistema público de saúde vem procurando a saúde suplementar. Contudo, afirmar que o acesso é garantido no domínio privado, através da contratação dos planos de saúde, é uma incerteza que rodeia a inspiração para esta pesquisa, que se justifica pela relevância de ações que possibilitem a melhora da qualidade regulatória dos planos de saúde, a partir do controle social de seus usuários. O objetivo geral é analisar as percepções do acesso aos exames de alta complexidade nos serviços de saúde privados entre usuários de planos de saúde. Os objetivos específicos são descrever as percepções dos usuários de planos de saúde acerca do acesso aos exames de alta complexidade; analisar as motivações dos usuários de planos de saúde privados para a realização de exames de alta complexidade através da rede privada de assistência; e analisar o nível de satisfação dos usuários de planos de saúde quanto ao acesso aos exames de alta complexidade. A metodologia é qualitativa-descritiva, onde a amostra foi de trinta usuários de planos de saúde, acima de 18 anos, selecionados no campo de estudo no ano de 2010. O cenário de estudo foi um laboratório privado de medicina diagnóstica no Rio de Janeiro. As técnicas de coleta de dados utilizadas foram formulário e entrevista individual estruturada. A análise do formulário foi realizada através de estatística descritiva, e as entrevistas através da análise de conteúdo temática-categorial. Os usuários de plano de saúde declararam que o acesso é garantido com facilidade para os exames de alta complexidade. Suas principais motivações para a realização desses exames na rede privada de assistência foram caracterizadas pela rapidez de atendimento, flexibilidade e facilidade de marcação pela internet, telefone ou pessoalmente no laboratório estudado, pronta entrega dos resultados, dificuldade e morosidade do atendimento do SUS, localização do prestador credenciado próxima de bairros residenciais ou do trabalho, resolutividade diagnóstica de imagem de excelência, possibilidade de escolha pelo usuário entre as modalidades aberta e fechada de ressonância magnética e tomografia computadorizada, além da densitometria óssea que foram facilmente acessíveis a todos os sujeitos da pesquisa. O nível de satisfação foi correspondido com a rapidez na realização dos exames em caráter eletivo e de urgência quase equiparados na escala de tempo de acordo com os usuários. Contudo, embora as notas de avaliação dos usuários quanto aos seus planos de saúde tenham sido altas, foram abordadas algumas dificuldades, tais como: prazos de validade dos pedidos médicos com datação prévia; solicitações de senhas de autorização pela operadora; burocracia nos procedimentos de agendamento; dificuldades de acesso para tratamentos como implantes, fisioterapia, RPG, pilates, home care, consultas de check up; negação de reembolsos; restrição de materiais cirúrgicos, em especial as próteses e órteses; e restrições específicas de grau para cirurgias de miopia. Conclui-se que o atendimento rápido dos exames de imagem de alto custo na amostra foi descrito como satisfatório, embora a percepção de rapidez possa variar em função do tipo de produto do plano de saúde privado contratado, com necessidade de melhoria regulatória em alguns aspectos pontuais da saúde suplementar.
Resumo:
This study was conducted to identify a functioning fingerlings production and delivery system for a sustainable aquaculture development. Data were collected from 234 respondents randomly sampled from a population of 600 fish farmers. Results indicated that farmer-to-farmer was the major source of fingerlings production and distribution system. Although this source accessed disadvantaged groups like the rural based, resource poor, less educated and women, it lacked knowledge on how to produce good quality fingerlings. These results suggest that a decentralized and privatized fingerlings production and delivery system should be promoted. For this system to operate effectively the aquaculture department should first identify potential zones for aquaculture growth and profit motivated fingerlings producers and distributors. Furthermore, the institutional mechanism through which farmer-to-farmer will operate should be identified and strengthened through short and long term training programmes. The government should support the system by providing guidelines for good quality fingerlings management; maintain brood stock parents and technical training in Bangladesh.
Resumo:
An efficient one-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In this technique, carry propagation is avoided by introducing reference digits to restrict the intermediate carry and sum digits to {1,0} and {0,1}, respectively. The proposed technique requires significantly fewer minterms and simplifies system complexity compared to the reported one-step MSD addition techniques. An incoherent correlator based on an optoelectronic shared content-addressable memory processor is suggested to perform the addition operation. In this technique, only one set of minterms needs to be stored, independent of the operand length. (C) 2002 society or Photo-Optical Instrumentation Engineers.
Resumo:
A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
There is at the moment no direct method of determining the organic matter content of natural waters. In 1940/41 8 different water bodies in central Russia were studied and their organic matter identified. The author concludes that there is currently no easy method to determine organic matter in water. A number methods need to be applied.
Resumo:
Observations are reported on the content of organic matter in the Moscow region in 1941. Some data is given on alkalinity, oxygen content and colourisation of the rivers.
Resumo:
Chronic diseases of the central nervous system are poorly treated due to the inability of most therapeutics to cross the blood-brain barrier. The blood-brain barrier is an anatomical and physiological barrier that severely restricts solute influx, including most drugs, from the blood to the brain. One promising method to overcome this obstacle is to use endogenous solute influx systems at the blood-brain barrier to transport drugs. Therapeutics designed to enter the brain through transcytosis by binding the transferrin receptor, however, are restricted within endothelial cells. The focus of this work was to develop a method to increase uptake of transferrin-containing nanoparticles into the brain by overcoming these restrictive processes.
To accomplish this goal, nanoparticles were prepared with surface transferrin molecules bound through various liable chemical bonds. These nanoparticles were designed to shed the targeting molecule during transcytosis to allow increased accumulation of nanoparticles within the brain.
Transferrin was added to the surface of nanoparticles through either redox or pH sensitive chemistry. First, nanoparticles with transferrin bound through disulfide bonds were prepared. These nanoparticles showed decreased avidity for the transferrin receptor after exposure to reducing agents and increased ability to enter the brain in vivo compared to those lacking the disulfide link.
Next, transferrin was attached through a chemical bond that cleaves at mildly acidic pH. Nanoparticles containing a cleavable link between transferrin and gold nanoparticle cores were found to both cross an in vitro model of the blood-brain barrier and accumulate within the brain in significantly higher numbers than similar nanoparticles lacking the cleavable bond. Also, this increased accumulation was not seen when using this same strategy with an antibody to transferrin receptor, indicating that behavior of nanoparticles at the blood-brain barrier varies depending on what type of targeting ligand is used.
Finally, polymeric nanoparticles loaded with dopamine and utilizing a superior acid-cleavable targeting chemistry were investigated as a potential treatment for Parkinson’s disease. These nanoparticles were capable of increasing dopamine quantities in the brains of healthy mice, highlighting the therapeutic potential of this design. Overall, this work describes a novel method to increase targeted nanoparticle accumulation in the brain.
Resumo:
Cancer chemotherapy has advanced from highly toxic drugs to more targeted treatments in the last 70 years. Chapter 1 opens with an introduction to targeted therapy for cancer. The benefits of using a nanoparticle to deliver therapeutics are discussed. We move on to siRNA in particular, and why it would be advantageous as a therapy. Specific to siRNA delivery are some challenges, such as nuclease degradation, quick clearance from circulation, needing to enter cells, and getting to the cytosol. We propose the development of a nanoparticle delivery system to tackle these challenges so that siRNA can be effective.
Chapter 2 of this thesis discusses the synthesis and analysis of a cationic mucic acid polymer (cMAP) which condenses siRNA to form a nanoparticle. Various methods to add polyethylene glycol (PEG) for stabilizing the nanoparticle in physiologic solutions, including using a boronic acid binding to diols on mucic acid, forming a copolymer of cMAP with PEG, and creating a triblock with mPEG on both ends of cMAP. The goal of these various pegylation strategies was to increase the circulation time of the siRNA nanoparticle in the bloodstream to allow more of the nanoparticle to reach tumor tissue by the enhanced permeation and retention effect. We found that the triblock mPEG-cMAP-PEGm polymer condensed siRNA to form very stable 30-40 nm particles that circulated for the longest time – almost 10% of the formulation remained in the bloodstream of mice 1 h after intravenous injection.
Chapter 3 explores the use of an antibody as a targeting agent for nanoparticles. Some antibodies of the IgG1 subtype are able to recruit natural killer cells that effect antibody dependent cellular cytotoxicity (ADCC) to kill the targeted cell to which the antibody is bound. There is evidence that the ADCC effect remains in antibody-drug conjugates, so we wanted to know whether the ADCC effect is preserved when the antibody is bound to a nanoparticle, which is a much larger and complex entity. We utilized antibodies against epidermal growth factor receptor with similar binding and pharmacokinetics, cetuximab and panitumumab, which differ in that cetuximab is an IgG1 and panitumumab is an IgG2 (which does not cause ADCC). Although a natural killer cell culture model showed that gold nanoparticles with a full antibody targeting agent can elicit target cell lysis, we found that this effect was not preserved in vivo. Whether this is due to the antibody not being accessible to immune cells or whether the natural killer cells are inactivated in a tumor xenograft remains unknown. It is possible that using a full antibody still has value if there are immune functions which are altered in a complex in vivo environment that are intact in an in vitro system, so the value of using a full antibody as a targeting agent versus using an antibody fragment or a protein such as transferrin is still open to further exploration.
In chapter 4, nanoparticle targeting and endosomal escape are further discussed with respect to the cMAP nanoparticle system. A diboronic acid entity, which gives an order of magnitude greater binding (than boronic acid) to cMAP due to the vicinal diols in mucic acid, was synthesized, attached to 5kD or 10kD PEG, and conjugated to either transferrin or cetuximab. A histidine was incorporated into the triblock polymer between cMAP and the PEG blocks to allow for siRNA endosomal escape. Nanoparticle size remained 30-40 nm with a slightly negative ca. -3 mV zeta potential with the triblock polymer containing histidine and when targeting agents were added. Greater mRNA knockdown was seen with the endosomal escape mechanism than without. The nanoparticle formulations were able to knock down the targeted mRNA in vitro. Mixed effects suggesting function were seen in vivo.
Chapter 5 summarizes the project and provides an outlook on siRNA delivery as well as targeted combination therapies for the future of personalized medicine in cancer treatment.