801 resultados para consultant selection, decision support system, requirement engineering
Resumo:
The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.
Resumo:
Introduction Electronic medication administration record (eMAR) systems are promoted as a potential intervention to enhance medication safety in residential aged care facilities (RACFs). The purpose of this study was to conduct an in-practice evaluation of an eMAR being piloted in one Australian RACF before its roll out, and to provide recommendations for system improvements. Methods A multidisciplinary team conducted direct observations of workflow (n=34 hours) in the RACF site and the community pharmacy. Semi-structured interviews (n=5) with RACF staff and the community pharmacist were conducted to investigate their views of the eMAR system. Data were analysed using a grounded theory approach to identify challenges associated with the design of the eMAR system. Results The current eMAR system does not offer an end-to-end solution for medication management. Many steps, including prescribing by doctors and communication with the community pharmacist, are still performed manually using paper charts and fax machines. Five major challenges associated with the design of eMAR system were identified: limited interactivity; inadequate flexibility; problems related to information layout and semantics; the lack of relevant decision support; and system maintenance issues.We suggest recommendations to improve the design of the eMAR system and to optimize existing workflows. Discussion Immediate value can be achieved by improving the system interactivity, reducing inconsistencies in data entry design and offering dedicated organisational support to minimise connectivity issues. Longer-term benefits can be achieved by adding decision support features and establishing system interoperability requirements with stakeholder groups (e.g. community pharmacies) prior to system roll out. In-practice evaluations of technologies like eMAR system have great value in identifying design weaknesses which inhibit optimal system use.
Resumo:
Two trials were done in this project. One was a continuation of work started under a previous GRDC/SRDC-funded activity, 'Strategies to improve the integration of legumes into cane based farming systems'. This trial aimed to assess the impact of trash and tillage management options and nematicide application on nematodes and crop performance. Methods and results are contained in the following publication: Halpin NV, Stirling GR, Rehbein WE, Quinn B, Jakins A, Ginns SP. The impact of trash and tillage management options and nematicide application on crop performance and plant-parasitic nematode populations in a sugarcane/peanut farming system. Proc. Aust. Soc. Sugar Cane Technol. 37, 192-203. Nematicide application in the plant crop significantly reduced total numbers of plant parasitic nematodes (PPN) but there was no impact on yield. Application of nematicide to the ratoon crop significantly reduced sugar yield. The study confirmed other work demonstrating that implementation of strategies like reduced tillage reduced populations of total PPN, suggesting that the soil was more suppressive to PPN in those treatments. The second trial, a variety trial, demonstrated the limited value of nematicide application in sugarcane farming systems. This study has highlighted that growers shouldn’t view nematicides as a ‘cure all’ for paddocks that have historically had high PPN numbers. Nematicides have high mammalian toxicity, have the potential to contaminate ground water (Kookana et al. 1995) and are costly. The cost of nematicide used in R1 was approx. $320 - $350/ha, adding $3.50/t of cane in a 100 t/ha crop. Also, our study demonstrated that a single nematicide treatment at the application rate registered for sugarcane is not very effective in reducing populations of nematode pests. There appears to be some levels of resistance to nematodes within the current suite of varieties available to the southern canelands. For example the soil in plots that were growing Q183 had 560% more root knot nematodes / 200mL soil compared to plots that grew Q245. The authors see great value in investment into a nematode screening program that could rate varieties into groups of susceptibility to both major sugarcane nematode pests. Such a rating could then be built into a decision support ‘tree’ or tool to better enable producers to select varieties on a paddock by paddock basis.
Resumo:
Reductionist thinking will no longer suffice to address contemporary, complex challenges that defy sectoral, national, or disciplinary boundaries. Furthermore, lessons learned from the past cannot be confidently used to predict outcomes or help guide future actions. The authors propose that the confluence of a number of technology and social disruptors presents a pivotal moment in history to enable real-time, accelerated and integrated action that can adequately support a ‘future earth’ through transformational solutions. Building on more than a decade of dialogues hosted by the International Society for Digital Earth (ISDE), and evolving a briefing note presented to delegates of Pivotal2015, the paper presents an emergent context for collectively addressing spatial information, sustainable development and good governance through three guiding principles for enabling prosperous living in the 21st Century. These are: (1) open data, (2) real world context and (3) informed visualization for decision support. The paper synthesizes an interdisciplinary dialogue to create a credible and positive future vision of collaborative and transparent action for the betterment of humanity and planet. It is intended that the three Pivotal Principles can be used as an elegant framework for action towards the Digital Earth vision, across local, regional, and international communities and organizations.
Resumo:
Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.
Resumo:
Economic valuation of ecosystem services is widely advocated as a useful decision-support tool for ecosystem management. However, the extent to which economic valuation of ecosystem services is actually used or considered useful in decision-making is poorly documented. This literature blindspot is explored with an application to coastal and marine ecosystems management in Australia. Based on a nation-wide survey of eighty-eight decision-makers representing a diversity of management organizations, the perceived usefulness and level of use of ecosystem services economic valuation in support of coastal and marine management are examined. A large majority of decision-makers are found to be familiar with economic valuation and consider it useful - even necessary - in decision-making, although this varies across decision-makers groups. However, most decision-makers never or rarely use it. The perceived level of importance and trust in estimated dollar values differ across ecosystem services, and are especially high for values that relate to commercial activities. A number of factors are also found to influence respondent’s use of economic valuation. Such findings concur with conclusions from other existing works, and are instructive to reflect on the issue of the usefulness of ESV in environmental management decision-making. They also confirm that the survey-based approach developed in this application represents a sound strategy to examine this issue at various scales and management levels.