878 resultados para confinement, FRP, concrete, elliptical section, stress-strain behavior
Resumo:
Zebrafish have been demonstrated to react consistently to noxious chemical stimuli and present reliable phenotypes of stress, fear, and anxiety. In this article, we describe the modulation of nociceptive-like responses of zebrafish to fear-, stress-, and anxiety-eliciting situations. Animals were exposed to an alarm substance, confinement stress, or a novel environment before being injected with 1% acetic acid in the tail. The alarm substance and confinement stress reduced the display of erratic movements and tail-beating behavior elicited by acetic acid. The novelty of the environment, in contrast, increased the frequency of tail-beating behavior. The results suggest that descending modulatory control of nociception exists in zebrafish, with apparent fear- and stress-induced analgesia and anxiety-induced hyperalgesia.
Resumo:
O presente trabalho trata da formulação e da implementação computacional, em MATLAB®, para a análise numérica de seções reforçadas de concreto armado, submetidas à flexão composta, considerando o estado de tensões anterior ao reforço. A referida análise se dá com a geração de diagramas de interação momento fletor esforço normal por dois métodos, quais sejam: a) varredura dos domínios de deformação da NBR6118/2003; b) determinação dos picos de diagramas momento fletor – esforço normal – curvatura. Em ambos os procedimentos utiliza-se o método numérico do ponto médio na integração do cálculo dos esforços resistentes, e o método de Newton Raphson para a obtenção de raízes é usado na determinação da deformação no eixo de referência da seção, durante a determinação dos diagramas momento fletor -esforço normal - curvatura. Preliminarmente, concluiu-se que a primeira das duas metodologias aplicadas é inviável. Posteriormente, com a confirmação da eficácia da segunda metodologia, foi possível expandir o escopo do trabalho de modo a permitir a análise de seções de formatos quaisquer executadas em várias etapas, considerando o estado de tensões inicial em cada uma das etapas. A implementação computacional referente a este trabalho se baseou no programa para análise numérica de seções SECLAB, desenvolvido pelo professor Remo Magalhães de Souza.
Resumo:
The bond between steel and concrete is essential for the existence of reinforced concrete structures, as both materials act together to absorb structural strain. The bond phenomenon is considered to be complex regarding many factors that affect it. Several types of bond tests have been proposed over years. One is the modified proposed of pull-out test, which was elaborated by Lorrain and Barbosa [1] called APULOT test (Appropriete pull-out-test). Based on experimental results obtained by Vale Silva[2] either by conventional pull-out tests, or by modified pull-out test, APULOT, seeks to know the numeric behavior of bond steel-concrete through a numerical simulation using a calculation code ATENA which is based on the Finite Element Method (FEM). The numerical simulation provided better evaluate the stress distribution and cracking that occurs during the test, thereby becoming a valuable tool to support the experimental project that aims to validation, validation partially or not recommend the modified bond test steel-concrete - APULOT test - as quality control test of structural concrete. The numerical results showed good representation compared to experimental results.
Resumo:
Because the biomechanical behavior of dental implants is different from that of natural tooth, clinical problems may occur. The mechanism of stress distribution and load transfer to the implant/bone interface is a critical issue affecting the success rate of implants. Therefore, the aim of this study was to conduct a brief literature review of the available stress analysis methods to study implant-supported prosthesis loading and to discuss their contributions in the biomechanical evaluation of oral rehabilitation with implants. Several studies have used experimental, analytical, and computational models by means of finite element models (FEM), photoelasticity, strain gauges and associations of these methods to evaluate the biomechanical behavior of dental implants. The FEM has been used to evaluate new components, configurations, materials, and shapes of implants. The greatest advantage of the photoelastic method is the ability to visualize the stresses in complex structures, such as oral structures, and to observe the stress patterns in the whole model, allowing the researcher to localize and quantify the stress magnitude. Strain gauges can be used to assess in vivo and in vitro stress in prostheses, implants, and teeth. Some authors use the strain gauge technique with photoelasticity or FEM techniques. These methodologies can be widely applied in dentistry, mainly in the research field. Therefore, they can guide further research and clinical studies by predicting some disadvantages and streamlining clinical time.
Resumo:
The aim of this study was to use the finite element method to evaluate the distribution of stresses and strains on the local bone tissue adjacent to the miniplate used for anchorage of orthodontic forces. Methods: A 3-dimensional model composed of a hemimandible and teeth was constructed using dental computed tomographic images, in which we assembled a miniplate with fixation screws. The uprighting and mesial movements of the mandibular second molar that was anchored with the miniplate were simulated. The miniplate was loaded with horizontal forces of 2, 5, and 15 N. A moment of 11.77 N.mm was also applied. The stress and strain distributions were analyzed, and their correlations with the bone remodeling criteria and miniplate stability were assessed. Results: When orthodontic loads were applied, peak bone strain remained within the range of bone homeostasis (100-1500 mu m strain) with a balance between bone formation and resorption. The maximum deformation was found to be 1035 mu m strain with a force of 5 N. At a force of 15 N, bone resorption was observed in the region of the screws. Conclusions: We observed more stress concentration around the screws than in the cancellous bone. The levels of stress and strain increased when the force was increased but remained within physiologic levels. The anchorage system of miniplate and screws could withstand the orthodontic forces, which did not affect the stability of the miniplate.
Resumo:
The modulus of elasticity is an important property for the behavior analysis of concrete structures. This research evaluated the strain difference between concrete specimens with and without the application of laminate carbon fiber composites as well as the variation time, in months, of the axial strength compression and modulus of elasticity. Through the experimental results, it is concluded that increases in compressive strength and modulus of elasticity are more significant in the specimens without reinforcement.
Resumo:
For many years AASHTO provided no recommendation to state DOT’s on bottom flange confinement reinforcement for their bridge superstructures. The 1996 edition of AASHTO Standard Specification for Highway Bridges stated that nominal reinforcement be placed to enclose the prestressing steel from the end of the girder for at least a distance equal to the girder’s height. A few years later the 2004 AASHTO LRFD Bridge Design Specification changed the distance over which the confinement was to be distributed from 1.0h to 1.5h, and gave minimum requirements for the amount of steel to be used, No.3 bars, and their maximum spacing, not to exceed 6”. Research was undertaken to study what impact, if any, confinement reinforcement has on the performance of prestressed concrete bridge girders. Of particular interest was the effect confinement had on the transfer length, development length, and vertical shear capacity of the fore mentioned members. First, an analytical investigation was performed on the subject, and then an experimental investigation followed which consisted of designing, fabricating, and testing eight tee-girders and three NU1100 girders with particular attention paid to the amount and distribution of confinement reinforcement placed at the end of each girder. The results of the study show: 1) neither the amount or distribution of confinement reinforcement had a significant effect on the initial or final transfer length of the prestress strands; 2) at the AASHTO calculated development length, no significant impact from confinement was found on either the nominal flexural capacity of bridge girders or bond capacity of the prestressing steel; 3) the effects from varied confinement reinforcement on the shear resistance of girders tested was negligible, however, distribution of confinement did show to have an impact on the prestressed strands’ bond capacity; 4) confinement distribution across the entire girder did increase ductility and reduced cracking under extreme loading conditions.
Resumo:
Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the impact of global and/or local strain engineering techniques on tri-gate p- and nMuGFETs performance is experimentally evaluated. Multiple gate structures were analyzed through basic and analog performance parameters for four different splits processed with different strain-engineering techniques (unstrained, uniaxial, biaxial and uniaxial+biaxial stress). While n-channel devices with narrow fins present a worse analog behavior, biaxial stress promotes the electron mobility for larger devices increasing the voltage gain. Besides the voltage gain, the transconductance, output conductance and Early Voltage are also evaluated. Although pMuGFETs are less affected by the strain engineering, they present better analog behavior for all studied devices.
Resumo:
Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.
Resumo:
This paper presents a method to design membrane elements of concrete with orthogonal mesh of reinforcement which are subject to compressive stress. Design methods, in general, define how to quantify the reinforcement necessary to support the tension stress and verify if the compression in concrete is within the strength limit. In case the compression in membrane is excessive, it is possible to use reinforcements subject to compression. However, there is not much information in the literature about how to design reinforcement for these cases. For that, this paper presents a procedure which uses the model based on Baumann's [1] criteria. The strength limits used herein are those recommended by CEB [3], however, a model is proposed in which this limit varies according to the tensile strain which occur perpendicular to compression. This resistance model is based on concepts proposed by Vecchio e Collins [2].
Resumo:
Fluoxetine (FLX) is commonly used to treat anxiety and depressive disorders in pregnant women. Since FLX crosses the placenta and is excreted in milk, maternal treatment with this antidepressant may expose the fetus and neonate to increased levels of serotonin (5-HT). Long-term behavioral abnormalities have been reported in rodents exposed to higher levels of 5-HT during neurodevelopment. In this study we evaluated if maternal exposure to FLX during pregnancy and lactation would result in behavioral and/or stress response disruption in adolescent and adult rats. Our results indicate that exposure to FLX influenced restraint stress-induced Fos expression in the amygdala in a gender and age-specific manner. In male animals, a decreased expression was observed in the basolateral amygdala at adolescence and adulthood; whereas at adulthood, a decrease was also observed in the medial amygdala. A lack of FLX exposure effect was observed in females and also in the paraventricular nucleus of both genders. Regarding the behavioral evaluation, FLX exposure did not induce anhedonia in the sucrose preference test but decreased the latency to feed of both male and female adolescent rats evaluated in the novelty-suppressed feeding test. In conclusion, FLX exposure during pregnancy and lactation decreases acute amygdalar stress response to a psychological stressor in males (adolescents and adults) as well as influences the behavior of adolescents (males and females) in a model that evaluates anxiety and/or depressive-like behavior. Even though FLX seems to be a developmental neurotoxicant, the translation of these findings to human safe assessment remains to be determined since it is recognized that not treating a pregnant or lactating woman may also impact negatively the development of the descendants.
Resumo:
This thesis selects concrete, steel and their relation as research subjects, mainly commentary and discusses the property changes of steel and concrete materials under and after high temperature.The differences and comparisons of reasearch methods and ways between different researchers and different papers,particularly for chinese researches and chinese papers,and partly for comparison between chinese papers methods and Euro-Amercian papers methods about Fire Resistance Behavior of Reinforced Concrete will be summarized and analyzed.The researches on fire-resistance behavior of reinforced concrete become more and more important all over the world. And I would find differences between Chinese researches results, between Chinese researches results and other countries researches results.
Resumo:
The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.
Resumo:
This dissertation is devoted to the experimental exploration of the propagation of elastic waves in soft mesoscopic structures with submicrometer dimensions. A strong motivation of this work is the large technological relevance and the fundamental importance of the subject. Elastic waves are accompanied by time-dependent fluctuations of local stress and strain fields in the medium. As such, the propagation phase velocities are intimately related to the elastic moduli. Knowledge of the elastic wave propagation directly provides information about the mechanical properties of the probed mesoscopic structures, which are not readily accessible experimentally. On the other hand, elastic waves, when propagating in an inhomogeneous medium with spatial inhomogeneities comparable to their wavelength, exhibit rather rich behavior, including the appearance of novel physical phenomena, such as phononic bandgap formation. So far, the experimental work has been restricted to macroscopic structures, which limit wave propagation below the KHz range. It was anticipated that an experimental approach capable of probing the interplay of the wave propagation with the controlled mesoscopic structures would contribute to deeper insights into the fundamental problem of elastic wave propagation in inhomogeneous systems. The mesoscopic nature of the structures to be studied precludes the use of traditional methods, such as sound transmission, for the study of elastic wave propagation. In this work, an optical method utilizing the inelastic scattering of photons by GHz frequency thermally excited elastic waves, known as Brillouin light scattering spectroscopy (BLS), was employed. Two important classes of soft structures were investigated: thin films and colloidal crystals. For the former, the main interest was the effect of the one-dimensional (1D) confinement on the wave propagation due to the presence of the free-surface or interface of the layer and the utilization of these waves to extract relevant material parameters. For the second system, the primary interest was the interaction of the elastic wave and the strong scattering medium with local resonance units in a three-dimensional (3D) periodic arrangement.