912 resultados para conceptual classification model of knowledge
Resumo:
The Lateral Leg Spring model (LLS) was developed by Schmitt and Holmes to model the horizontal-plane dynamics of a running cockroach. The model captures several salient features of real insect locomotion, and demonstrates that horizontal plane locomotion can be passively stabilized by a well-tuned mechanical system, thus requiring minimal neural reflexes. We propose two enhancements to the LLS model. First, we derive the dynamical equations for a more flexible placement of the center of pressure (COP), which enables the model to capture the phase relationship between the body orientation and center-of-mass (COM) heading in a simpler manner than previously possible. Second, we propose a reduced LLS "plant model" and biologically inspired control law that enables the model to follow along a virtual wall, much like antenna-based wall following in cockroaches. © 2006 Springer.
Resumo:
Superconductors have a bright future; they are able to carry very high current densities, switch rapidly in electronic circuits, detect extremely small perturbations in magnetic fields, and sustain very high magnetic fields. Of most interest to large-scale electrical engineering applications are the ability to carry large currents and to provide large magnetic fields. There are many projects that use the first property, and these have concentrated on power generation, transmission, and utilization; however, there are relatively few, which are currently exploiting the ability to sustain high magnetic fields. The main reason for this is that high field wound magnets can and have been made from both BSCCO and YBCO, but currently, their cost is much higher than the alternative provided by low-Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form, which can be magnetized to high fields. This paper explains the mechanism, which allows superconductors to be magnetized without the need for high field magnets to perform magnetization. A finite-element model is presented, which is based on the E-J current law. Results from this model show how magnetization of the superconductor builds up cycle upon cycle when a traveling magnetic wave is induced above the superconductor. © 2011 IEEE.
Resumo:
Atlases and statistical models play important roles in the personalization and simulation of cardiac physiology. For the study of the heart, however, the construction of comprehensive atlases and spatio-temporal models is faced with a number of challenges, in particular the need to handle large and highly variable image datasets, the multi-region nature of the heart, and the presence of complex as well as small cardiovascular structures. In this paper, we present a detailed atlas and spatio-temporal statistical model of the human heart based on a large population of 3D+time multi-slice computed tomography sequences, and the framework for its construction. It uses spatial normalization based on nonrigid image registration to synthesize a population mean image and establish the spatial relationships between the mean and the subjects in the population. Temporal image registration is then applied to resolve each subject-specific cardiac motion and the resulting transformations are used to warp a surface mesh representation of the atlas to fit the images of the remaining cardiac phases in each subject. Subsequently, we demonstrate the construction of a spatio-temporal statistical model of shape such that the inter-subject and dynamic sources of variation are suitably separated. The framework is applied to a 3D+time data set of 138 subjects. The data is drawn from a variety of pathologies, which benefits its generalization to new subjects and physiological studies. The obtained level of detail and the extendability of the atlas present an advantage over most cardiac models published previously. © 1982-2012 IEEE.
Resumo:
Visual information is difficult to search and interpret when the density of the displayed information is high or the layout is chaotic. Visual information that exhibits such properties is generally referred to as being "cluttered." Clutter should be avoided in information visualizations and interface design in general because it can severely degrade task performance. Although previous studies have identified computable correlates of clutter (such as local feature variance and edge density), understanding of why humans perceive some scenes as being more cluttered than others remains limited. Here, we explore an account of clutter that is inspired by findings from visual perception studies. Specifically, we test the hypothesis that the so-called "crowding" phenomenon is an important constituent of clutter. We constructed an algorithm to predict visual clutter in arbitrary images by estimating the perceptual impairment due to crowding. After verifying that this model can reproduce crowding data we tested whether it can also predict clutter. We found that its predictions correlate well with both subjective clutter assessments and search performance in cluttered scenes. These results suggest that crowding and clutter may indeed be closely related concepts and suggest avenues for further research.
Resumo:
The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.
Resumo:
This paper describes a novel approach to the analysis of supply and demand of water in California. A stochastic model is developed to assess the future supply of and demand for water resources in California. The results are presented in the form of a Sankey diagram where present and stochastically-varying future fluxes of water in California and its sub-regions are traced from source to services by mapping the various transformations of water from when it is first made available for use, through its treatment, recycling and reuse, to its eventual loss in a variety of sinks. This helps to highlight the connections of water with energy and land resources, including the amount of energy used to pump and treat water, the amount of water used for energy production, and the land resources that create a water demand to produce crops for food. By mapping water in this way, policy-makers can more easily understand the competing uses of water, through the identification of the services it delivers (e.g. sanitation, food production, landscaping), the potential opportunities for improving themanagement of the resource and the connections with other resources which are often overlooked in a traditional sector-based management strategy. This paper focuses on a Sankey diagram for water, but the ultimate aim is the visualisation of linked resource futures through inter-connected Sankey diagrams for energy, land and water, tracking changes from the basic resources for all three, their transformations, and the final services they provide.
Resumo:
This paper studies the excitability properties of a generalized FitzHugh-Nagumo model. The model differs from the classical FitzHugh-Nagumo model in that it accounts for the effect of cooperative gating variables such as activation of calcium currents. Excitability is explored by unfolding a pitchfork bifurcation that is shown to organize five different types of excitability. In addition to the three classical types of neuronal excitability, two novel types are described and distinctly associated to the presence of cooperative variables. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
BACKGROUND: Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. RESULTS: The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. CONCLUSIONS: We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.
Resumo:
An integrated 2-D model of a lithium ion battery is developed to study the mechanical stress in storage particles as a function of material properties. A previously developed coupled stress-diffusion model for storage particles is implemented in 2-D and integrated into a complete battery system. The effect of morphology on the stress and lithium concentration is studied for the case of extraction of lithium in terms of previously developed non-dimensional parameters. These non-dimensional parameters include the material properties of the storage particles in the system, among other variables. We examine particles functioning in isolation as well as in closely-packed systems. Our results show that the particle distance from the separator, in combination with the material properties of the particle, is critical in predicting the stress generated within the particle. © 2012 Springer-Verlag.
Resumo:
Decision making at the front end of innovation is critical for the success of companies. This paper presents a method, called decision making based on knowledge (DeBK), which was created to analyze the decision-making process at the front end. The method evaluates the knowledge of project information and the importance of decision criteria, compiling a measure that indicates whether decisions are founded on available knowledge and what criteria are in fact being considered to delineate them. The potential contribution of DeBK is corroborated through two projects that faced decision-making issues at the front end of innovation. © 2014 RADMA and John Wiley & Sons Ltd.
Resumo:
A discrete element model (DEM) combined with computational fluid dynamics (CFD) was developed to model particle and fluid behaviour in 3D cylindrical fluidized beds. Novel techniques were developed to (1) keep fluid cells, defined in cylindrical coordinates, at a constant volume in order to ensure the conditions for validity of the volume-averaged fluid equations were satisfied and (2) smoothly and accurately measure voidage in arbitrarily shaped fluid cells. The new technique for calculating voidage was more stable than traditional techniques, also examined in the paper, whilst remaining computationally-effective. The model was validated by quantitative comparison with experimental results from the magnetic resonance imaging of a fluidised bed analysed to give time-averaged particle velocities. Comparisons were also made between theoretical determinations of slug rise velocity in a tall bed. It was concluded that the DEM-CFD model is able to investigate aspects of the underlying physics of fluidisation not readily investigated by experiment. © 2014 The Authors.