803 resultados para computing
Resumo:
Recent progresses in the software development world has assisted a change in hardware from heavy mainframes and desktop machines to unimaginable small devices leading to the prophetic "third computing paradigm", Ubiquitous Computing. Still, this novel unnoticeable devices lack in various capabilities, like computing power, storage capacity and human interface. Connectivity associated to this devices is also considered an handicap which comes generally associated expensive and limited protocols like GSM and UMTS. Considering this scenario as background, this paper presents a minimal communication protocol introducing better interfaces for limited devices. Special attention has been paid to the limitations of connectivity, storage capacity and scalability of the developed software applications. Illustrating this new protocol, a case-study is presented addressing car sensors communicating with a central
Resumo:
Graphical user interfaces (GUIs) are critical components of todays software. Given their increased relevance, correctness and usability of GUIs are becoming essential. This paper describes the latest results in the development of our tool to reverse engineer the GUI layer of interactive computing systems. We use static analysis techniques to generate models of the user interface behaviour from source code. Models help in graphical user interface inspection by allowing designers to concentrate on its more important aspects. One particularly type of model that the tool is able to generate is state machines. The paper shows how graph theory can be useful when applied to these models. A number of metrics and algorithms are used in the analysis of aspects of the user interface's quality. The ultimate goal of the tool is to enable analysis of interactive system through GUIs source code inspection.
Resumo:
Graphical user interfaces (GUIs) are critical components of today's software. Developers are dedicating a larger portion of code to implementing them. Given their increased importance, correctness of GUIs code is becoming essential. This paper describes the latest results in the development of GUISurfer, a tool to reverse engineer the GUI layer of interactive computing systems. The ultimate goal of the tool is to enable analysis of interactive system from source code.
Resumo:
In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.
Resumo:
Interactive systems users still face several challenge. Besides current improvements in usability and intuitiveness users have to adapt to the systems proposed to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, etc. This paper proposes a methodology to improve this situation supporting the use of interactive systems by users. To achieve this goal the approach is based on enriched task models and picture-driven computing. An example based on a text editor illustrates the approach.
Resumo:
Nowadays despite improvements in usability and intuitiveness users have to adapt to the proposed systems to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, and fulfill system's specifications. This paper proposes an approach to improve this situation enabling graphical user interface redefinition through virtualization and computer vision with the aim of increasing the system's usability. To achieve this goal the approach is based on enriched task models, virtualization and picture-driven computing.
Resumo:
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized crosscorrelation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates di erent temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1:6 1:9% and 4:0 4:2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Resumo:
In this article we argue that digital simulations promote and explore complex relations between the player and the machines cybernetic system with which it relates through gameplay, that is, the real application of tactics and strategies used by participants as they play the game. We plan to show that the realism of simulation, together with the merger of artificial objects with the real world, can generate interactive empathy between players and their avatars. In this text, we intend to explore augmented reality as a means to visualise interactive communication projects. With ARToolkit, Virtools and 3ds Max applications, we aim to show how to create a portable interactive platform that resorts to the environment and markers for constructing the games scenario. Many of the conventional functions of the human eye are being replaced by techniques where images do not position themselves in the traditional manner that we observe them (Crary, 1998), or in the way we perceive the real world. The digitalization of the real world to a new informational layer over objects, people or environments, needs to be processed and mediated by tools that amplify the natural human senses.