967 resultados para computably enumerable degrees
Resumo:
The ratio of the electron attachment coefficient eta to the gas pressure p (reduced to 0 degrees C) evaluated from the Townsend current growth curves in binary mixtures of electronegative gases (SF6, CCl2F2, CO2) and buffer gases (N2, Ar, air) clearly indicate that the eta /p ratios do not scale as the partial pressure of electronegative gas in the mixture. Extensive calculations carried out using data experimentally obtained have shown that the attachment coefficient of the mixture eta mix can be expressed as eta mix= eta (1-exp- beta F/(100-F)) where eta is the attachment coefficient of the 100% electronegative gas, F is the percentage of the electronegative gas in the mixture and beta is a constant. The results of this analysis explain to a high degree of accuracy the data obtained in various mixtures and are in very good agreement with the data deduced by Itoh and co-workers (1980) using the Boltzmann equation method.
Resumo:
Non-stoichiometric substituted cerium vanadates, MxCe1-xVO4 (M = Li, Ca and Fe), were synthesized by solid-state reactions. The crystal structure was analyzed by powder X-ray diffraction and it exhibits a tetragonal zircon Structure, crystallizing in the space group I4(1)/amd with a = 7.3733(4) and c = 6.4909(4) angstrom and Z = 4. Particle sizes were in the range of 600-800 nm, as observed by scanning electron microscopy. The thermal analysis of the compounds showed phase stability up to 1100 degrees C. The UV diffuse reflectance spectra indicated that the compounds have band gaps in the range of 2.6-2.9 eV. The photocatalytic activity of these Compounds was investigated for the first time for the degradation of different dyes, and organics, the oxidation of cyclohexane and the hydroxylation of benzene. The degradation of dyes was modeled using the Langmuir-Hinshelwood kinetics, while the oxidation of cyclohexane and hydroxylation of benzene were modeled using a free radical mechanism and a series reaction mechanism, respectively.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.
Resumo:
Herpesviral haematopoietic necrosis is a disease of goldfish, Carassius auratus, caused by Cyprinid herpesvirus-2 (CyHV-2) infection. Quantitative PCR was carried out on tissue homogenates from healthy goldfish fingerlings, broodfish, eggs and fry directly sampled from commercial farms, from moribund fish submitted to our laboratory for disease diagnosis, and on naturally-infected CyHV-2 carriers subjected to experimental stress treatments. Healthy fish from 14 of 18 farms were positive with copy numbers ranging from tens to 10(7) copies mu g(-1) DNA extracted from infected fish. Of 118 pools of broodfish tested, 42 were positive. The CyHV-2 was detected in one lot of fry produced from disinfected eggs. Testing of moribund goldfish, in which we could not detect any other pathogens, produced 12 of 30 cases with 10(6)-10(8) copies of CyHV-2 mu g(-1) DNA extracted. Subjecting healthy CyHV-2 carriers to cold shock (22-10 degrees C) but not heat, ammonia or high pH, increased viral copy numbers from mean copy number (+/- SE) of 7.3 +/- 11 to 394 +/- 55 mu g(-1) DNA extracted after 24 h. CyHV-2 is widespread on commercial goldfish farms and outbreaks apparently occur when healthy carriers are subjected to a sharp temperature drop followed by holding at the permissive temperature for the disease.
Resumo:
Sago starch is an important dietary carbohydrate in lowland Papua New Guinea (PNG). An investigation was conducted to determine whether microbes play a role in its preservation using traditional methods. In 12 stored sago samples collected from PNG villages, lactic acid bacteria (LAB) were present (>= 3.6 x 10(4) cfu/g) and pH ranged from 6.8 to 4.2. Acetic and propionic acids were detected in all samples, while butyric, lactic and valeric acids were present in six or more. In freshly prepared sago, held in sealed containers in the laboratory at 30 degrees C, spontaneous fermentation by endogenous microflora of sago starch was observed. This was evident by increasing concentrations of acetic, butyric and lactic acids over 4 weeks, and pH reducing from 4.9 to 3.1: both LAB and yeasts were involved. Survival of potential bacterial pathogens was monitored by seeding sago starch with similar to 10(4)/g of selected organisms. Numbers of Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus fell to <30/g within 7 days. Salmonella sp. was present only in low numbers after 7 days (<36/g), but Escherichia coli was still detectable after three weeks (>10(2)/g). Fermentation appeared to increase the storability and safety of the product.
Resumo:
A new culture method for lesser mealworm, Alphitobius diaperinus (Panzer), was developed to provide large numbers of adult lesser mealworms of approximately the same age for insecticide resistance testing. Culturing entailed allowing 100 adults to reproduce for 4 days in a wheat-based culture medium contained inside a plastic culture box, removing the adults from the medium, and then rearing their progeny to adulthood therein, in approximately 56 days at 32 degrees C and 55% RH. During their development, progeny were supplied water via apple slices at 0, 21 and 35 days, and a foam substrate in which to pupate, also at 35 days. During 2004-2005, adult lesser mealworms were collected from six broiler-house populations and then cultured with this method. Each population produced 4500 adults required to complete resistance testing with one insecticide within ten culture boxes, at an average of 798 adults per culture box.
Resumo:
Rabbits released in Australia in 1859 spread to most areas of suitable habitat by 1910 causing great damage to the environment and primary industries. Measurement of damage is essential to justify spending money and utilising resources to remove rabbits. Damage to pasture and biodiversity may be irreversible and therefore difficult to measure without comparison with an area that has never suffered such damage. A rabbit proof fence completed in 1906 protected a large part of south east Queensland from rabbits. The Darling Downs Moreton Rabbit Board (DDMRB) continues to maintain the fence and keep the area relatively free of rabbits. This area is unique because it is highly suitable for rabbits and yet it has never ‘experienced’ the damage caused by plagues of uncontrolled rabbits. A study site was established where the DDMRB fence separates an area heavily used by rabbits (‘dirty side’) from an area that has never been infested by rabbits (‘clean side’). The number and location of all rabbit warrens and log piles were recorded. The absence of warrens from the ‘clean side’ shows clearly that the rabbit proof fence has prevented rabbits from establishing warren systems. The ‘dirty side’ is characterised by a high number of warrens, a high density of rabbits, fewer pasture species and low macropod activity. Future work will determine whether the rabbit populations are viable in the absence of rabbit warrens. We plan to radio collar rabbits on both sides of the fence to measure their survival rate. In selected warrens and log piles of varying degrees of complexity and size, rabbits will be trapped and information on reproduction and age structure will be collected. This will allow better targeting of the source of rabbits during control operations. Once the initial comparative analysis of the site has been completed, all rabbit warrens will be destroyed on the dirty side of the fence. After rabbits are removed from this area, monitoring will continue to determine if pasture and biodiversity on opposite sides of the fence begin to mirror each other.
Resumo:
When recapturing satellite collared wild dogs that had been trapped one month previous in padded foothold traps, we noticed varying degrees of pitting on the pads of their trapped paw. Veterinary advice, based on images taken of the injuries, suggests that the necrosis was caused by vascular compromise. Five of six dingoes we recaptured had varying degrees of necrosis restricted only to the trapped foot and ranging from single 5 mm holes to 25% sections of the toe pads missing or deformed, including loss of nails. The traps used were rubber-padded, two–coiled, Victor Soft Catch #3 traps. The springs are not standard Victor springs but were Beefer springs; these modifications slightly increase trap speed and the jaw pressure on the trapped foot. Despite this modification the spring pressure is still relatively mild in comparison to conventional long spring or four-coiled wild dog traps. The five wild dogs developing necrosis were trapped in November 2006 at 5-6 months of age. Traps were checked each morning so the dogs were unlikely to have been restrained in the trap for more than 12 hours. All dogs exhibited a small degree of paw damage at capture which presented itself as a swollen paw and compression at the capture point. In contrast, eight wild dogs, 7-8 month-old, were captured two months later in February. Upon their release, on advice from a veterinarian, we massaged the trapped foot to get blood flow back in to the foot and applied a bruise treatment (Heparinoid 8.33 mg/ml) to assist restoring blood flow. These animals were subsequently recaptured several months later and showed no signs of necrosis. While post-capture foot injuries are unlikely to be an issue in conventional control programs where the animal is immediately destroyed, caution needs to be used when releasing accidentally captured domestic dogs or research animals captured in rubber-padded traps. We have demonstrated that 7-8 month old dogs can be trapped and released without any evidence of subsequent necrosis following minimal veterinary treatment. We suspect that the rubber padding on traps may increase the tourniquet effect by wrapping around the paw and recommend the evaluation of offset laminated steel jaw traps as an alternative. Offset laminated steel jaw traps have been shown to be relatively humane producing as few foot injuries as rubber-jawed traps.
Resumo:
Grazing is a major land use in Australia's rangelands. The 'safe' livestock carrying capacity (LCC) required to maintain resource condition is strongly dependent on climate. We reviewed: the approaches for quantifying LCC; current trends in climate and their effect on components of the grazing system; implications of the 'best estimates' of climate change projections for LCC; the agreement and disagreement between the current trends and projections; and the adequacy of current models of forage production in simulating the impact of climate change. We report the results of a sensitivity study of climate change impacts on forage production across the rangelands, and we discuss the more general issues facing grazing enterprises associated with climate change, such as 'known uncertainties' and adaptation responses (e.g. use of climate risk assessment). We found that the method of quantifying LCC from a combination of estimates (simulations) of long-term (>30 years) forage production and successful grazier experience has been well tested across northern Australian rangelands with different climatic regions. This methodology provides a sound base for the assessment of climate change impacts, even though there are many identified gaps in knowledge. The evaluation of current trends indicated substantial differences in the trends of annual rainfall (and simulated forage production) across Australian rangelands with general increases in most of western Australian rangelands ( including northern regions of the Northern Territory) and decreases in eastern Australian rangelands and south-western Western Australia. Some of the projected changes in rainfall and temperature appear small compared with year-to-year variability. Nevertheless, the impacts on rangeland production systems are expected to be important in terms of required managerial and enterprise adaptations. Some important aspects of climate systems science remain unresolved, and we suggest that a risk-averse approach to rangeland management, based on the 'best estimate' projections, in combination with appropriate responses to short-term (1-5 years) climate variability, would reduce the risk of resource degradation. Climate change projections - including changes in rainfall, temperature, carbon dioxide and other climatic variables - if realised, are likely to affect forage and animal production, and ecosystem functioning. The major known uncertainties in quantifying climate change impacts are: (i) carbon dioxide effects on forage production, quality, nutrient cycling and competition between life forms (e.g. grass, shrubs and trees); and (ii) the future role of woody plants including effects of. re, climatic extremes and management for carbon storage. In a simple example of simulating climate change impacts on forage production, we found that increased temperature (3 degrees C) was likely to result in a decrease in forage production for most rangeland locations (e. g. -21% calculated as an unweighted average across 90 locations). The increase in temperature exacerbated or reduced the effects of a 10% decrease/increase in rainfall respectively (-33% or -9%). Estimates of the beneficial effects of increased CO2 (from 350 to 650 ppm) on forage production and water use efficiency indicated enhanced forage production (+26%). The increase was approximately equivalent to the decline in forage production associated with a 3 degrees C temperature increase. The large magnitude of these opposing effects emphasised the importance of the uncertainties in quantifying the impacts of these components of climate change. We anticipate decreases in LCC given that the 'best estimate' of climate change across the rangelands is for a decline (or little change) in rainfall and an increase in temperature. As a consequence, we suggest that public policy have regard for: the implications for livestock enterprises, regional communities, potential resource damage, animal welfare and human distress. However, the capability to quantify these warnings is yet to be developed and this important task remains as a challenge for rangeland and climate systems science.
Resumo:
The problem of an infinite transversely isotropic circular cylindrical shell subjected to an axisymmetric radial external line load is investigated using elasticity theory, classical shell theory and shear deformation theory. The results obtained by these methods are compared for two ratios of inner to outer shell radius and for varying degrees of anisotropy. Some typical results are given here to show the effect of anisotropy and the thickness of the shell on the distribution of stresses and displacements.
Resumo:
Listeria and Salmonella are important foodborne pathogens normally associated with the shrimp production chain. This study investigated the potential of Salmonella Typhimurium, Salmonella Senftenberg, and Listeria monocytogenes (Scott A and V7) to attach to and colonize shrimp carapace. Attachment and colonization of Listeria and Salmonella were demonstrated. Shrimp abdominal carapaces showed higher levels of bacterial attachment (P < 0.05) than did head carapaces. Listeria consistently exhibited greater attachment (P < 0.05) than did Salmonella on all surfaces. Chitinase activity of all strains was tested and found not to occur at the three temperatures (10, 25. and 37 degrees C) tested. The surface physicochemical properties of bacterial cells and shrimp carapace were Studied to determine their role in attachment and colonization. Salmonella had significantly (P < 0.05) more positive (-3.9 and -6.0 mV) cell surface charge than Listeria (-18 and -22.8 mV) had. Both bacterial species were found to be hydrophilic (<35%) when measured by the bacterial adherence to hydrocarbon method and by contact angle (theta) measurements (Listeria, 21.3 and 24.8 degrees, and Salmonella, 14.5 and 18.9 degrees). The percentage of cells retained by Pheryl-Sepharose was lower for Salmonella (12.8 to 14.8%) than it was for Listeria (26.5 to 31.4%). The shrimp carapace was found to be hydrophobic (theta = 74.5 degrees), and a significant (P < 0.05) difference in surface roughness between carapace types was noted. There was a linear correlation between bacterial cell Surface charge (r(2) = 0.95) and hydrophobicity (r(2) = 0.85) and initial attachment (P < 0.05) of Listeria and Salmonella to carapaces. However, the same properties Could not be related to subsequent colonization.
Resumo:
Rabbit Haemorrhagic Disease Virus (RHDV) was introduced to Australia in 1995 for the control of wild rabbits. Initial outbreaks greatly reduced rabbit numbers and the virus has continued to control rabbits to varying degrees in different parts of Australia. However, recent field evidence suggests that the virus may be becoming less effective in those areas that have previously experienced repeated epizootics causing high mortality. There are also reports of rabbits returning to pre-1995 density levels, Virus and host can be expected to co-evolve. The host will develop resistance to the virus with the virus subsequently changing to overcome that resistance. It has been 12 years since the release of RHDV and it is an opportune time to examine where the dynamic currently stands between RHDV and rabbits. Laboratory challenge tests have indicated that resistance to RHDV has developed to different degrees in populations throughout Australia. In one population a low dose (1:25 dilution) of Czech strain RHDV failed to infect a single susceptible rabbit, yet infected a low to high (up to 73%) percentage across other populations tested. Different selection pressures are present in these populations and will be driving the level of resistance being seen. The mechanisms and genetics behind the development of resistance are also important as the on-going use of RHDV as a control tool in the management of rabbits relies on our understanding of factors influencing the efficacy of the virus. Understanding how resistance has developed may provide clues on how best to use the virus to circumvent these mechanisms. Similarly, it will help in managing populations that have yet to develop high levels of resistance.
Resumo:
Climate change projections for Australia predict increasing temperatures, changes to rainfall patterns, and elevated atmospheric carbon dioxide (CO2) concentrations. The aims of this study were to predict plant production responses to elevated CO2 concentrations using the SGS Pasture Model and DairyMod, and then to quantify the effects of climate change scenarios for 2030 and 2070 on predicted pasture growth, species composition, and soil moisture conditions of 5 existing pasture systems in climates ranging from cool temperate to subtropical, relative to a historical baseline. Three future climate scenarios were created for each site by adjusting historical climate data according to temperature and rainfall change projections for 2030, 2070 mid-and 2070 high-emission scenarios, using output from the CSIRO Mark 3 global climate model. In the absence of other climate changes, mean annual pasture production at an elevated CO2 concentration of 550 ppm was predicted to be 24-29% higher than at 380 ppm CO2 in temperate (C-3) species-dominant pastures in southern Australia, with lower mean responses in a mixed C-3/C-4 pasture at Barraba in northern New South Wales (17%) and in a C-4 pasture at Mutdapilly in south-eastern Queensland (9%). In the future climate scenarios at the Barraba and Mutdapilly sites in subtropical and subhumid climates, respectively, where climate projections indicated warming of up to 4.4 degrees C, with little change in annual rainfall, modelling predicted increased pasture production and a shift towards C-4 species dominance. In Mediterranean, temperate, and cool temperate climates, climate change projections indicated warming of up to 3.3 degrees C, with annual rainfall reduced by up to 28%. Under future climate scenarios at Wagga Wagga, NSW, and Ellinbank, Victoria, our study predicted increased winter and early spring pasture growth rates, but this was counteracted by a predicted shorter spring growing season, with annual pasture production higher than the baseline under the 2030 climate scenario, but reduced by up to 19% under the 2070 high scenario. In a cool temperate environment at Elliott, Tasmania, annual production was higher than the baseline in all 3 future climate scenarios, but highest in the 2070 mid scenario. At the Wagga Wagga, Ellinbank, and Elliott sites the effect of rainfall declines on pasture production was moderated by a predicted reduction in drainage below the root zone and, at Ellinbank, the use of deeper rooted plant systems was shown to be an effective adaptation to mitigate some of the effect of lower rainfall.
Resumo:
Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.