806 resultados para composite multiscale entropy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring non-ionizing radiant energy is increasingly demanded for many applications such as automobile, biomedical and security system. Thermal type infrared (IR) sensors can operate at room temperature and pyroelectric materials have high sensitivity and accuracy for that application. Working as thermal transducer pyroelectric sensor converts the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. In the present study the composite made of poly(vinylidene fluoride) -PVDF and lead zirconate titanate (PZT) partially recovered with polyaniline (PAni) conductor polymer has been used as sensor element. The pyroelectric coefficient p(T) was obtained by measuring the pyroelectric reversible current, i.e., measuring the thermally stimulated depolarization current (TSDC) after removing all irreversible contribution to the current such as injected charge during polarization of the sample. To analyze the sensing property of the pyroelectric material, the sensor is irradiated by a high power light source (halogen lamp of 250 W) that is chopped providing a modulated radiation. A device assembled in the laboratory is used to change the light intensity sensor, an aluminum strip having openings with diameters ranging from 1 to 10 mm incremented by one millimeter. The sensor element is assembled between two electrodes while its frontal surface is painted black ink to maximize the light absorption. The signal from the sensor is measured by a Lock-In amplifier model SR530 -Stanford Research Systems. The behavior of the output voltage for an input power at several frequencies for PZT-PAni/PVDF (30/ 70 vol%) composite follows the inverse power law (1/ f) and the linearity can be observed in the frequency range used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive restorations have increasingly been used in dentistry, and the adhesive system application technique may determine the success of the restorative procedure. The aim of this study was to evaluate the influence of the application technique of two adhesive systems (Clearfil SE Bond and Adper Scotchbond MultiPurpose) on the bond strength and adhesive layer of composite resin restorations. Eight human third molars were selected and prepared with Class I occlusal cavities. The teeth were restored with composite using various application techniques for both adhesives, according to the following groups (n = 10): group 1 (control), systems were applied and adhesive was immediately light activated for 20 seconds without removing excesses; group 2, excess adhesive was removed with a gentle jet of air for 5 seconds; group 3, excess was removed with a dry microbrush-type device; and group 4, a gentle jet of air was applied after the microbrush and then light activation was performed. After this, the teeth were submitted to microtensile testing. For the two systems tested, no statistical differences were observed between groups 1 and 2. Groups 3 and 4 presented higher bond strength values compared with the other studied groups, allowing the conclusion that excess adhesive removal with a dry micro-brush could improve bond strength in composite restorations. Predominance of adhesive fracture and thicker adhesive layer were observed via scanning electron microscopy (SEM) in groups 1 and 2. For groups 3 and 4, a mixed failure pattern and thinner adhesive layer were verified. Clinicians should be aware that excess adhesive may negatively affect bond strength, whereas a thin, uniform adhesive layer appears to be favorable. (Quintessence Int 2013;44:9-15)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect on micro-tensile bond strength (mu-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer's instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd: YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm(2)) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (alpha = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher mu-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in mu-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher mu-TBS when compared to the suggested manufacturer's technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of intermediate adhesive resin application (IAR) on tensile bond strength (TBS) for early composite repairs in situations where substrate and repair composite bonded together were once of the same kind with the substrate (similar) and once other than the substrate material (dissimilar). Specimens from three types of composites (TPH Spectrum (TPH), Charisma (CHA) and Filtek Z250 (Z250)) were fabricated. The specimens in each composite group (n=72) were randomly divided into six subgroups (n=12). In each composite group, the similar and two dissimilar composites were bonded onto the substrates once using an IAR (Adper Single Bond Plus) and once without. After water storage for I week at 37 degrees C, substrate-adherent combinations were submitted to tensile test. Data were analyzed with three-way ANOVA and Tukey's tests (alpha=0.05). The substrate-adherent combination (p=0.0001), adherent (repair) composite (p=0.0001), and application of IAR (p=0.0001) significantly affected the results. Utilization of IAR improved the repair bond strength for all composite combinations. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon.Materials and Methods: Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-mu m Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 mu m) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 mu m aluminum trioxide particles coated with silica (30 mu m SiO2) + core + veneer: silane; group 4: core: 30 mu m SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5 degrees C-55 degrees C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (alpha = 0.05).Results: Group 3 demonstrated significantly higher values (MPa) (8.6 +/- 2.7) than those of the other groups (3.2 +/- 3.1, 3.2 +/- 3, and 3.1 +/- 3.5 for groups 1, 2, and 4, respectively) (p < 0.001). All groups showed exclusively adhesive failure between the repair resin and the core zirconia. The incidence of cohesive failure in the ceramic was highest in group 3 (8 out of 10) compared to the other groups (0/10, 2/10, and 2/10, in groups 1, 2, and 4, respectively). SEM images showed that air abrasion on the zirconia core only also impinged on the veneering ceramic where the etching pattern was affected.Conclusion: Etching the veneer ceramic with HF gel and silica coating of the zirconia core followed by silanization of both substrates could be advised for the repair of the zirconia core / veneering ceramic complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis.Methods: An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups.Results: Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations.Conclusion: Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the two-year clinical performance of Class III, IV, and V composite restorations using a two-step etch-and-rinse adhesive system (2-ERA) and three one-step self-etching adhesive systems (1-SEAs).Material and Methods: Two hundred Class III, IV, and V composite restorations were placed into 50 patients. Each patient received four composite restorations (Amaris, Voco), and these restorations were bonded with one of three 1-SEAs (Futurabond M, Voco; Clearfil S3 Bond, Kuraray; and Optibond All-in-One, Kerr) or one 2-ERA (Adper Single Bond 2/3M ESPE). The four adhesive systems were evaluated at baseline and after 24 months using the following criteria: restoration retention, marginal integrity, marginal discoloration, caries occurrence, postoperative sensitivity and preservation of tooth vitality. After two years, 162 restorations were evaluated in 41 patients. Data were analyzed using the chi(2) test (p<0.05).Results: There were no statistically significant differences between the 2-ERA and the 1-SEAs regarding the evaluated parameters (p>0.05).Conclusion: The 1-SEAs showed good clinical performance at the end of 24 months.