1000 resultados para composição isotópica do carbono
Resumo:
We describe general considerations about the present and the future standing of carbon nanostructures, mainly carbon nanotubes and graphene. Basic concepts and definitions, select structure/property relationships, and potential applications are reviewed. The analysis of the global market for these nanostructures, the commercial products available currently, the role of the chemistry, the main challenges remaining and a brief view of the field in Brazil are also presented and discussed.
Resumo:
The type A gasoline samples were analyzed by gas chromatography with flame ionization detector (GC-FID) which allowed quantifying and classifying of the various compounds into different classes of hydrocarbons. Several physicochemical parameters were evaluated according to the official methods in order to compare the results obtained against the limits established by the Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP, 2011). Additionally, principal component analysis (PCA) was applied to discriminate the samples studied, which revealed the separation of four groups according to their chemical composition determined in samples collected from the eight fuel distributors in the State of Pará.
Resumo:
The processes and sources that regulate the elemental composition of aerosol particles were investigated in both fine and coarse modes during the dry and wet seasons. One hundred and nine samples were collected from the biological reserve Cuieiras - Manaus from February to October 2008, and analyzed together with 668 samples that were previously collected at Balbina from 1998 to 2002. Particle induced X-ray emission technique was used to determine the elemental composition, while the concentration of black carbon was obtained from the measurement of optical reflectance. Absolute principal factor analysis and positive matrix factorization were performed for source apportionment, which was complemented with back trajectory analysis. A regional identity for the natural biogenic aerosol was found for the Central Amazon Basin and can be used in dynamical chemical region models.
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.
Resumo:
The synthesis and characterization of different platinum nanoparticle/carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm-2 were determined for the oxidation of methanol and ethanol, respectively.
Resumo:
Rice husk ash (RHA) is used as a silica source for several purposes, among them to obtain metal catalysts, as was done in this work. The catalysts were characterized by chemisorption, physisorption, thermal analyses (TG, DSC), X-ray diffraction, X-ray fluorescence, temperature-programmed reduction and scanning electron microscopy. The catalysts synthesized with different Ni loadings supported on RHA were applied to the reaction of dry reforming of methane. The reaction was tested at three temperatures of catalytic reduction (500, 600 and 700 ºC). All synthesized catalysts were active for the studied reaction, with different H2/CO ratios achieved according to degree of metallic dispersion.
Resumo:
A glassy carbon electrode modified with ruthenium hexacyanoferrate (RuOHCF) was investigated as an electrocatalyst for the detection of procaine with the aim of quantification in pharmaceutical and forensic samples. The RuOHCF films were prepared by electrochemical deposition, and the parameters used in this process (concentration of RuCl3, K3Fe(CN)6, temperature, and number of cyclic voltammograms recorded in the modification step) were carefully optimized. Based on the optimal conditions achieved, the RuOHCF modified electrode allows the determination of procaine at 0.0 V with a detection limit of 11 nmol L-1using square wave voltammetry.
Resumo:
In this paper, two simple ways of evaluating carbon steel sheet corrosion in a hydrochloric acid solution were presented as an experimental proposal for corrosion teaching. The first method is based on direct measurements of mass before and after corrosion tests. The second approach follows the principle of visual colorimetry by which soluble corrosion products are transformed into red complexes allowing monitoring of the products’ concentration according to increases in solution color intensity. Both methods proved able to determine the corrosion rate.
Resumo:
The seed oils from four plants (Scheelea phalerata, Butia capitata, Syagrus romanzoffiana, Terminalia cattapa) found in Mato Grosso do Sul were extracted at good yields. Alkaline transesterification of these seed oils to esters using methanol and ethanol was studied and also produced good yields. Oleic acid (30.5/32.3%), lauric acid (30.7/32.9%) methyl and ethyl esters, were the main components of transesterification of the oils from Scheelea phalerata and Syagrus romanzoffiana. Lauric acid (42.2%), capric acid (15.9%) and caprylic acid (14.6%) methyl and ethyl esters were the main ester components of transesterification of the oil from Butia capitata. Oleic acid (37.8%), palmitic acid (33.5%) and linoleic acid (22.6%) methyl and ethyl esters were the main components of transesterification of oil from Terminalia catappa. Based on differential scanning calorimetry (DSC) studies, the first crystallization peak temperature of esters was observed. Esters derived from oils of the family Arecaceae (Scheelea phalerata, Butia capitata, Syagrus romanzoffiana) showed the lowest points of crystallization, despite having high levels of saturated fat. Esters of Terminalia cattapa oil, rich in unsaturated fat, showed the highest crystallization temperature. This difference in behavior is probably related to the high concentration of esters derived from lauric acid and palmitic acid.
Resumo:
Carbon nanotubes (CNT) have been studied for biomedical applications due to their unique properties. However, pristine CNT have structural features and impurities that can cause toxicity to biological systems. In this work, we describe a method to purify multiwalled carbon nanotubes (MWCNT) by chemical modification and subsequent attachment of hydroxyl and carboxyl groups to improve dispersion and to decrease toxic effects. Nanocomposites from poly (L-lactic acid) (PLLA) and nanotubes were produced by the solvent casting method and characterized and evaluated for cytocompatibility with Vero cells. The nanocomposite interactions with Vero cells demonstrated that the cells were able to adhere and sustain proliferation and showed favorable cytocompatibility. In vitro studies also revealed an increase in fibroblast cell viability in the nanocomposites, compared with neat PLLA.
Resumo:
Solid samples containing a Ca2Fe2O5 phase were synthesized using the Pechini method. The samples were characterized using X-ray diffraction, thermogravimetric analysis, differential thermal analysis, X-ray fluorescence, nitrogen adsorption/desorption isotherms, and scanning electron microscopy. The stability of the Ca2Fe2O5 phase was evaluated in the photocatalytic degradation of methylene blue (MB) in aqueous solution in the presence of bubbling gas (air, N2, or CO2). The presence of CO2 is known to suppress MB degradation. After the photocatalytic test, changes were observed in the crystalline phase of all systems. These results suggest the low stability of the Ca2Fe2O5 phase in aqueous systems and the significant effect of CO2 on the photocatalytic activity of the Ca2Fe2O5 phase.
Resumo:
Carbon dots (CDs) constitute a new class of carbon-based nanomaterials that measure less than 10 nm and display attractive physical and chemical features such as fluorescence. CDs have been considered the new “power” carbon nanomaterials since their accidental discovery in 2004. This study reports a simple, easy, and accessible experiment for undergraduate courses. The experiment involves the preparation of CDs by pyrolysis using commercial gelatin as a low cost precursor as well as CD purification and optical characterization. The optical properties of CDs such as absorption and emission properties make them a promising material for teaching the basic concepts and techniques used for characterization of nanomaterials. Also, the reactants and final product are suitable for undergraduate courses since they are non-toxic materials. The prepared CDs can be used in such applications as bioimaging, solar cells, and photocatalysis.
Resumo:
Chemical investigation of the MeOH extract of root barks of P. pyramidallis (Tul.) L. P. Queiroz resulted in the isolation of 3,3'-dimethylellagic acid and 3,3'-dimethylellagic acid-4'-O-β-D-xyloside. Lupeol, β-sitosterol/stigmasterol and the mixture of fatty acid methyl ester derivatives were also obtained. Chromatographic procedures of the MeOH extract of the flowers of this species led to obtain an unusual mixture of fatty alcohols, β-sitosterol/stigmasterol, α-amyrin, β-amyrin and methyl gallate. The structures of the isolates were established by spectral data analysis. This is the first occurrence of 3,3'-dimethylellagic acid, 3,3'-dimethylellagic acid-4'- O-β-D-xyloside and free fatty alcohols in the Fabaceae family.
Resumo:
Este estudo descreve o comportamento voltamétrico da redução de 2-furfuraldeído em etanol utilizando-se eletrodo de carbono vítreo, visando estabelecer condições experimentais adequadas para a determinação de 2-furfuraldeído em álcool combustível. Os voltamogramas obtidos para o 2-furfuraldeído em uma velocidade de varredura (v) de 100mV.s-1 apresentaram uma corrente de pico catódica (i pc) definida em um potencial de -1,45V (vs. ECS) para o meio aquoso e -1,71V (vs. ECS) para o meio alcoólico, não sendo observadas correntes de pico anódicas nestes meios reacionais. A relação entre i pc e v½ apresentou-se linear em ambos os meios, exibindo um transporte de massa controlado por difusão. A análise dos parâmetros eletroquímicos obtidos neste estudo revelou que o processo eletródico apresenta um comportamento irreversível. A dependência de i pc com a concentração da espécie reacional apresentou-se linear no intervalo de concentração estudado, de 9,5x10-4 a 5,8x10-3 mol L-1 para ambos os meios. A sensibilidade do método em meio aquoso e alcoólico foi de 13,4 e 13,0 (x 10-3) mA mol-1 L respectivamente. Os limites de detecção (L.D.) referentes à determinação de 2-furfuraldeído, em meio aquoso e alcoólico situam-se entre 0,70 e 0,80 (x 10-3) mol L-1 respectivamente.