985 resultados para component classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 E38 K535 2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial timing of face-specific effects in event-related potentials (ERPs) is a point of contention in face processing research. Although effects during the time of the N170 are robust in the literature, inconsistent effects during the time of the P100 challenge the interpretation of the N170 as being the initial face-specific ERP effect. The interpretation of the early P100 effects are often attributed to low-level differences between face stimuli and a host of other image categories. Research using sophisticated controls for low-level stimulus characteristics (Rousselet, Husk, Bennett, & Sekuler, 2008) report robust face effects starting at around 130 ms following stimulus onset. The present study examines the independent components (ICs) of the P100 and N170 complex in the context of a minimally controlled low-level stimulus set and a clear P100 effect for faces versus houses at the scalp. Results indicate that four ICs account for the ERPs to faces and houses in the first 200ms following stimulus onset. The IC that accounts for the majority of the scalp N170 (icNla) begins dissociating stimulus conditions at approximately 130 ms, closely replicating the scalp results of Rousselet et al. (2008). The scalp effects at the time of the P100 are accounted for by two constituent ICs (icP1a and icP1b). The IC that projects the greatest voltage at the scalp during the P100 (icP1a) shows a face-minus-house effect over the period of the P100 that is less robust than the N 170 effect of icN 1 a when measured as the average of single subject differential activation robustness. The second constituent process of the P100 (icP1b), although projecting a smaller voltage to the scalp than icP1a, shows a more robust effect for the face-minus-house contrast starting prior to 100 ms following stimulus onset. Further, the effect expressed by icP1 b takes the form of a larger negative projection to medial occipital sites for houses over faces partially canceling the larger projection of icP1a, thereby enhancing the face positivity at this time. These findings have three main implications for ERP research on face processing: First, the ICs that constitute the face-minus-house P100 effect are independent from the ICs that constitute the N170 effect. This suggests that the P100 effect and the N170 effect are anatomically independent. Second, the timing of the N170 effect can be recovered from scalp ERPs that have spatio-temporally overlapping effects possibly associated with low-level stimulus characteristics. This unmixing of the EEG signals may reduce the need for highly constrained stimulus sets, a characteristic that is not always desirable for a topic that is highly coupled to ecological validity. Third, by unmixing the constituent processes of the EEG signals new analysis strategies are made available. In particular the exploration of the relationship between cortical processes over the period of the P100 and N170 ERP complex (and beyond) may provide previously unaccessible answers to questions such as: Is the face effect a special relationship between low-level and high-level processes along the visual stream?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing techniques involving hyperspectral imagery have applications in a number of sciences that study some aspects of the surface of the planet. The analysis of hyperspectral images is complex because of the large amount of information involved and the noise within that data. Investigating images with regard to identify minerals, rocks, vegetation and other materials is an application of hyperspectral remote sensing in the earth sciences. This thesis evaluates the performance of two classification and clustering techniques on hyperspectral images for mineral identification. Support Vector Machines (SVM) and Self-Organizing Maps (SOM) are applied as classification and clustering techniques, respectively. Principal Component Analysis (PCA) is used to prepare the data to be analyzed. The purpose of using PCA is to reduce the amount of data that needs to be processed by identifying the most important components within the data. A well-studied dataset from Cuprite, Nevada and a dataset of more complex data from Baffin Island were used to assess the performance of these techniques. The main goal of this research study is to evaluate the advantage of training a classifier based on a small amount of data compared to an unsupervised method. Determining the effect of feature extraction on the accuracy of the clustering and classification method is another goal of this research. This thesis concludes that using PCA increases the learning accuracy, and especially so in classification. SVM classifies Cuprite data with a high precision and the SOM challenges SVM on datasets with high level of noise (like Baffin Island).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affiliation: Centre Robert-Cedergren de l'Université de Montréal en bio-informatique et génomique & Département de biochimie, Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les employés d’un organisme utilisent souvent un schéma de classification personnel pour organiser les documents électroniques qui sont sous leur contrôle direct, ce qui suggère la difficulté pour d’autres employés de repérer ces documents et la perte possible de documentation pour l’organisme. Aucune étude empirique n’a été menée à ce jour afin de vérifier dans quelle mesure les schémas de classification personnels permettent, ou même facilitent, le repérage des documents électroniques par des tiers, dans le cadre d’un travail collaboratif par exemple, ou lorsqu’il s’agit de reconstituer un dossier. Le premier objectif de notre recherche était de décrire les caractéristiques de schémas de classification personnels utilisés pour organiser et classer des documents administratifs électroniques. Le deuxième objectif consistait à vérifier, dans un environnement contrôlé, les différences sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction du schéma de classification utilisé. Nous voulions vérifier s’il était possible de repérer un document avec la même efficacité, quel que soit le schéma de classification utilisé pour ce faire. Une collecte de données en deux étapes fut réalisée pour atteindre ces objectifs. Nous avons d’abord identifié les caractéristiques structurelles, logiques et sémantiques de 21 schémas de classification utilisés par des employés de l’Université de Montréal pour organiser et classer les documents électroniques qui sont sous leur contrôle direct. Par la suite, nous avons comparé, à partir d'une expérimentation contrôlée, la capacité d’un groupe de 70 répondants à repérer des documents électroniques à l’aide de cinq schémas de classification ayant des caractéristiques structurelles, logiques et sémantiques variées. Trois variables ont été utilisées pour mesurer l’efficacité du repérage : la proportion de documents repérés, le temps moyen requis (en secondes) pour repérer les documents et la proportion de documents repérés dès le premier essai. Les résultats révèlent plusieurs caractéristiques structurelles, logiques et sémantiques communes à une majorité de schémas de classification personnels : macro-structure étendue, structure peu profonde, complexe et déséquilibrée, regroupement par thème, ordre alphabétique des classes, etc. Les résultats des tests d’analyse de la variance révèlent des différences significatives sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction des caractéristiques structurelles, logiques et sémantiques du schéma de classification utilisé. Un schéma de classification caractérisé par une macro-structure peu étendue et une logique basée partiellement sur une division par classes d’activités augmente la probabilité de repérer plus rapidement les documents. Au plan sémantique, une dénomination explicite des classes (par exemple, par utilisation de définitions ou en évitant acronymes et abréviations) augmente la probabilité de succès au repérage. Enfin, un schéma de classification caractérisé par une macro-structure peu étendue, une logique basée partiellement sur une division par classes d’activités et une sémantique qui utilise peu d’abréviations augmente la probabilité de repérer les documents dès le premier essai.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un résumé en anglais est également disponible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper I criticize Alison Jaggar’s descriptions of feminist political theories. I propose an alternative classification of feminist theories that I think more accurately reflects the multiplication of feminist theories and philosophies. There are two main categories, “street theory” and academic theories, each with two sub-divisions, political spectrum and “differences” under street theory, and directly and indirectly political analyses under academic theories. My view explains why there are no radical feminists outside of North America and why there are so few socialist feminists inside North America. I argue, controversially, that radical feminism is a radical version of liberalism. I argue that “difference” feminist theories – theory by and about feminists of colour, queer feminists, feminists with disabilities and so on – belong in a separate sub-category of street theory, because they’ve had profound effects on feminist activism not tracked by traditional left-to-right classifications. Finally, I argue that, while academic feminist theories such as feminist existentialism or feminist sociological theory are generally unconnected to movement activism, they provide important feminist insights that may become importanby showing the advantages of my classification over Jaggar’s views.