942 resultados para cold or low temperature
Resumo:
A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and indentify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20 % without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught.
Resumo:
Incubation temperature (IT) was changed to evaluate if 6-wk-old birds become more tolerant to heat stress. After 13 d of incubation, 470 eggs were submitted to low (36.8degreesC), normal (37.8degreesC) and high (38.8degreesC) temperatures. At day 7 post-hatching, 144 birds were allocated to three rearing temperatures (48 birds/treatment): control/thermoneutral (35-24degreesC), high (33-30degreesC) or low (27-18degreesC) according to the age of the birds. Hsp70 levels in tissues of birds (1 d and 42 d), stress response (42 d) and performance were evaluated. High IT decreased brain (P < 0.01) and liver (P < 0.01) Hsp70 levels, whereas low IT decreased brain (P < 0.01) but increased heart (P < 0.01) Hsp70 levels in 1-d-old chicks. Birds incubated at a low temperature had higher (P < 0.05) feed intake (1-42d). High rearing temperature decreased feed intake (P<0.01) and liveweight (P<0.01). Colonic temperature was lower in birds incubated at a low temperature (P < 0.05) and higher in birds reared in a high temperature (P < 0.05) before heat stress. Birds reared in low temperature had higher increase in colonic temperature after heat stress (P < 0.05). Tissue Hsp70 levels were differently affected by rearing temperature, which affected broiler performance more than IT. Lower IT seemed to increase the sensitivity of birds to heat stress at market age.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrical properties of the grain boundary region of electroceramic sensor temperature based on inverse spinel Zn7Sb2O12 were investigated at high temperature. The zinc antimoniate was synthesized by a chemical route based on the modified Pechini method. The electric properties of Zn7Sb2O12 were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from 250 up to 600 degreesC. The grain boundary conductivity follows the Arrhenius law, with two linear branches of different slopes. These branches exhibit activation energies with very similar values; the low-temperature (less than or equal to350 degreesC) and high-temperature (greater than or equal to400 degreesC) regions are equal to 1.15 and 1.16 eV, respectively. Dissimilar behavior is observed on the relaxation time (tau) curve as a function of temperature, where a single slope is identified. The negative temperature coefficient parameters and nature of the polarization phenomenon of the grain boundary are discussed. (C) 2003 American Institute of Physics.
Resumo:
Fibrinolysis is a basic defense mechanism of the organism designed to control the deposition of fibrin in the vascular system and elsewhere. Fibrinolytic activity was measured by the fibrin plate method for three groups of rats (N = 6) that were maintained at room temperature, 20-25 degrees C, 3 degrees C or 38 degrees C for 4 h before testing. Based on measurement of fibrinolytic activity, the level of plasminogen activator released from isolated aortic segments of rats maintained at room temperature (24-28 degrees C) differed significantly from that of the 38 degrees C group. The animals maintained at 3 degrees C did not release plasminogen activator, suggesting that the fibrinolytic response was impaired at low temperature.
Resumo:
Agaricus blazei Murill is a mushroom largely consumed due to its medicinal properties. Effects of aqueous extract from its lineage AB97/11 in 2 fruiting body development stages (closed and opened pileus) were evaluated on chinese hamster V79 cells using cytokinesis blocking micronucleus (CBMN) and comet assays. The cells were treated at 0.15% concentration of aqueous extract prepared at different temperatures: ice-cold (4°C), room temperature (21°C) and warm (60°C). The extracts were applied in mutagenicity and antimutagenicity protocols (simultaneous, pre-incubation and continuous). The results showed that the aqueous extracts of Agaricus blazei lineage AB97/11 obtained at the 3 temperatures and both development stages did not present mutagenic or antimutagenic effect in V79 cells either in CBMN or comet assay.
Resumo:
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Cold shock proteins (CSPs) are nucleic acid binding chaperones, first described as being induced to solve the problem of mRNA stabilization after temperature downshift. Caulobacter crescentus has four CSPs: CspA and CspB, which are cold induced, and CspC and CspD, which are induced only in stationary phase. In this work we have determined that the synthesis of both CspA and CspB reaches the maximum levels early in the acclimation phase. The deletion of cspA causes a decrease in growth at low temperature, whereas the strain with a deletion of cspB has a very subtle and transient cold-related growth phenotype. The cspA cspB double mutant has a slightly more severe phenotype than that of the cspA mutant, suggesting that although CspA may be more important to cold adaptation than CspB, both proteins have a role in this process. Gene expression analyses were carried out using cspA and cspB regulatory fusions to the lacZ reporter gene and showed that both genes are regulated at the transcriptional and posttranscriptional levels. Deletion mapping of the long 5'-untranslated region (5'-UTR) of each gene identified a common region important for cold induction, probably via translation enhancement. In contrast to what was reported for other bacteria, these cold shock genes have no regulatory regions downstream from ATG that are important for cold induction. This work shows that the importance of CspA and CspB to C. crescentus cold adaptation, mechanisms of regulation, and pattern of expression during the acclimation phase apparently differs in many aspects from what has been described so far for other bacteria.
Resumo:
The aroma responsible for the flavor of fruits is highly susceptible to low temperatures in storage. The present study investigated the volatile composition of the Nanicao and Prata banana cultivars by testing pulp and whole fruit under cold storage conditions. The volatile fractions were characterized using headspace solid phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The cold storage induced changes in the volatile profile relative to the profile of the control group. The result of principal component analysis revealed that cold storage more strongly affects the Nanicao than the Prata cultivar. Esters such as 2-pentanol acetate, 3-methyl-1-butanol acetate, 2-methylpropyl butanoate, 3-methylbutyl butanoate, 2-methylpropyl 3-methylbutanoate and butyl butanoate were drastically reduced in the cold group of the Nanicao cultivar. Our results suggest that the metabolism responsible for the production of volatile compounds is related to the ability to tolerate low temperatures. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13 degrees C for 28 days (cold stress) and 28 degrees C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.