980 resultados para clustered multiway relay network (MWRN)
Resumo:
This paper presents comparative evaluation of the distance relay characteristics for UHV and EHV transmission lines. Distance protection relay characteristics for the EHV and UHV systems are developed using Electromagnetic Transients (EMT) program. The variation of ideal trip boundaries for both the systems are presented. Unlike the conventional distance protection relay which uses a lumped parameter model, this paper uses the distributed parameter model. The effect of larger shunt susceptance on the trip boundaries is highlighted. Performance of distance relay with ideal trip boundaries for EHV and UHV lines have been tested for various fault locations and fault resistances. Electromagnetic Transients (EMT) program has been developed considering distributed parameter line model for simulating the test systems. The voltage and current phasors are computed from the signals using an improved full cycle DFT algorithm taking 20 samples per cycle. Two practical transmission systems of Indian power grid, namely 765 kV UHV transmission line and SREB 24-bus 400kV EHV system are used to test the performance of the proposed approach.
Resumo:
Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.
Resumo:
We report novel resistor grid network based space cloth for application in single and multi layer radar absorbers. The space cloth is analyzed and relations are derived for the sheet resistance in terms of the resistor in the grid network. Design curves are drawn using MATLAB and the space cloth is analyzed using HFSS™ software in a Salisbury screen for S, C and X bands. Next, prediction and simulation results for a three layer Jaumann absorber using square grid resistor network with a Radar Cross Section Reduction (RCSR) of -15 dB over C, X and Ku bands is reported. The simulation results are encouraging and have led to the fabrication of prototype broadband radar absorber and experimental work is under progress.
Resumo:
This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.
Resumo:
With ever increasing demand for electric energy, additional generation and associated transmission facilities has to be planned and executed. In order to augment existing transmission facilities, proper planning and selective decisions are to be made whereas keeping in mind the interests of several parties who are directly or indirectly involved. Common trend is to plan optimal generation expansion over the planning period in order to meet the projected demand with minimum cost capacity addition along with a pre-specified reliability margin. Generation expansion at certain locations need new transmission network which involves serious problems such as getting right of way, environmental clearance etc. In this study, an approach to the citing of additional generation facilities in a given system with minimum or no expansion in the transmission facility is attempted using the network connectivity and the concept of electrical distance for projected load demand. The proposed approach is suitable for large interconnected systems with multiple utilities. Sample illustration on real life system is presented in order to show how this approach improves the overall performance on the operation of the system with specified performance parameters.
Resumo:
In recent years, there has been an upsurge of research interest in cooperative wireless communications in both academia and industry. This article presents a simple overview of the pivotal topics in both mobile station (MS)- and base station (BS)- assisted cooperation in the context of cellular radio systems. Owing to the ever-increasing amount of literature in this particular field, this article is by no means exhaustive, but is intended to serve as a roadmap by assembling a representative sample of recent results and to stimulate further research. The emphasis is initially on relay-base cooperation, relying on network coding, followed by the design of cross-layer cooperative protocols conceived for MS cooperation and the concept of coalition network element (CNE)-assisted BS cooperation. Then, a range of complexity and backhaul traffic reduction techniques that have been proposed for BS cooperation are reviewed. A more detailed discussion is provided in the context of MS cooperation concerning the pros and cons of dispensing with high-complexity, power-hungry channel estimation. Finally, generalized design guidelines, conceived for cooperative wireless communications, are presented.
Resumo:
A decode and forward protocol based Trellis Coded Modulation (TCM) scheme for the half-duplex relay channel, in a Rayleigh fading environment, is presented. The proposed scheme can achieve any spectral efficiency greater than or equal to one bit per channel use (bpcu). A near-ML decoder for the suggested TCM scheme is proposed. It is shown that the high Signal to Noise Ratio (SNR) performance of this near-ML decoder approaches the performance of the optimal ML decoder. Based on the derived Pair-wise Error Probability (PEP) bounds, design criteria to maximize the diversity and coding gains are obtained. Simulation results show a large gain in SNR for the proposed TCM scheme over uncoded communication as well as the direct transmission without the relay.
Resumo:
We propose energy harvesting technologies and cooperative relaying techniques to power the devices and improve reliability. We propose schemes to (a) maximize the packet reception ratio (PRR) by cooperation and (b) minimize the average packet delay (APD) by cooperation amongst nodes. Our key result and insight from the testbed implementation is about total data transmitted by each relay. A greedy policy that relays more data under a good harvesting condition turns out to be a sub optimal policy. This is because, energy replenishment is a slow process. The optimal scheme offers a low APD and also improves PRR.
Resumo:
In this letter, we compute the secrecy rate of decode-and-forward (DF) relay beamforming with finite input alphabet of size M. Source and relays operate under a total power constraint. First, we observe that the secrecy rate with finite-alphabet input can go to zero as the total power increases, when we use the source power and the relay weights obtained assuming Gaussian input. This is because the capacity of an eavesdropper can approach the finite-alphabet capacity of 1/2 log(2) M with increasing total power, due to the inability to completely null in the direction of the eavesdropper. We then propose a transmit power control scheme where the optimum source power and relay weights are obtained by carrying out transmit power (source power plus relay power) control on DF with Gaussian input using semi-definite programming, and then obtaining the corresponding source power and relay weights which maximize the secrecy rate for DF with finite-alphabet input. The proposed power control scheme is shown to achieve increasing secrecy rates with increasing total power with a saturation behavior at high total powers.
Resumo:
Given the significant gains that relay-based cooperation promises, the practical problems of acquisition of channel state information (CSI) and the characterization and optimization of performance with imperfect CSI are receiving increasing attention. We develop novel and accurate expressions for the symbol error probability (SEP) for fixed-gain amplify-and-forward relaying when the destination acquires CSI using the time-efficient cascaded channel estimation (CCE) protocol. The CCE protocol saves time by making the destination directly estimate the product of the source-relay and relay-destination channel gains. For a single relay system, we first develop a novel SEP expression and a tight SEP upper bound. We then similarly analyze an opportunistic multi-relay system, in which both selection and coherent demodulation use imperfect estimates. A distinctive aspect of our approach is the use of as few simplifying approximations as possible, which results in new results that are accurate at signal-to-noise-ratios as low as 1 dB for single and multi-relay systems. Using insights gleaned from an asymptotic analysis, we also present a simple, closed-form, nearly-optimal solution for allocation of energy between pilot and data symbols at the source and relay(s).
Resumo:
Protein structure space is believed to consist of a finite set of discrete folds, unlike the protein sequence space which is astronomically large, indicating that proteins from the available sequence space are likely to adopt one of the many folds already observed. In spite of extensive sequence-structure correlation data, protein structure prediction still remains an open question with researchers having tried different approaches (experimental as well as computational). One of the challenges of protein structure prediction is to identify the native protein structures from a milieu of decoys/models. In this work, a rigorous investigation of Protein Structure Networks (PSNs) has been performed to detect native structures from decoys/ models. Ninety four parameters obtained from network studies have been optimally combined with Support Vector Machines (SVM) to derive a general metric to distinguish decoys/models from the native protein structures with an accuracy of 94.11%. Recently, for the first time in the literature we had shown that PSN has the capability to distinguish native proteins from decoys. A major difference between the present work and the previous study is to explore the transition profiles at different strengths of non-covalent interactions and SVM has indeed identified this as an important parameter. Additionally, the SVM trained algorithm is also applied to the recent CASP10 predicted models. The novelty of the network approach is that it is based on general network properties of native protein structures and that a given model can be assessed independent of any reference structure. Thus, the approach presented in this paper can be valuable in validating the predicted structures. A web-server has been developed for this purpose and is freely available at http://vishgraph.mbu.iisc.ernet.in/GraProStr/PSN-QA.html.
Resumo:
In this paper, we evaluate secrecy rates in cooperative relay beamforming in the presence of imperfect channel state information (CSI) and multiple eavesdroppers. A source-destination pair aided by.. out of.. relays, 1 <= k <= M, using decode-and-forward relay beamforming is considered. We compute the worst case secrecy rate with imperfect CSI in the presence of multiple eavesdroppers, where the number of eavesdroppers can be more than the number of relays. We solve the optimization problem for all possible relay combinations to find the secrecy rate and optimum source and relay weights subject to a total power constraint. We relax the rank-1 constraint on the complex semi-definite relay weight matrix and use S-procedure to reformulate the optimization problem that can be solved using convex semi-definite programming.
Resumo:
A principal hypothesis for the evolution of leks (rare and intensely competitive territorial aggregations) is that leks result from females preferring to mate with clustered males. This hypothesis predicts more female visits and higher mating success per male on larger leks. Evidence for and against this hypothesis has been presented by different studies, primarily of individual populations, but its generality has not yet been formally investigated. We took a meta-analytical approach towards formally examining the generality of such a female bias in lekking species. Using available published data and using female visits as an index of female mating bias, we estimated the shape of the relationship between lek size and total female visits to a lek, female visits per lekking male and, where available, per capita male mating success. Individual analyses showed that female visits generally increased with lek size across the majority of taxa surveyed; the meta-analysis indicated that this relationship with lek size was disproportionately positive. The findings from analysing per capita female visits were mixed, with an increase with lek size detected in half of the species, which were, however, widely distributed taxonomically. Taken together, these findings suggest that a female bias for clustered males may be a general process across lekking species. Nevertheless, the substantial variation seen in these relationships implies that other processes are also important. Analyses of per capita copulation success suggested that, more generally, increased per capita mating benefits may be an important selective factor in lek maintenance.
Resumo:
Opportunistic relay selection in a multiple source-destination (MSD) cooperative system requires quickly allocating to each source-destination (SD) pair a suitable relay based on channel gains. Since the channel knowledge is available only locally at a relay and not globally, efficient relay selection algorithms are needed. For an MSD system, in which the SD pairs communicate in a time-orthogonal manner with the help of decode-and-forward relays, we propose three novel relay selection algorithms, namely, contention-free en masse assignment (CFEA), contention-based en masse assignment (CBEA), and a hybrid algorithm that combines the best features of CFEA and CBEA. En masse assignment exploits the fact that a relay can often aid not one but multiple SD pairs, and, therefore, can be assigned to multiple SD pairs. This drastically reduces the average time required to allocate an SD pair when compared to allocating the SD pairs one by one. We show that the algorithms are much faster than other selection schemes proposed in the literature and yield significantly higher net system throughputs. Interestingly, CFEA is as effective as CBEA over a wider range of system parameters than in single SD pair systems.
Resumo:
There is a growing recognition of the need to integrate non-trophic interactions into ecological networks for a better understanding of whole-community organization. To achieve this, the first step is to build networks of individual non-trophic interactions. In this study, we analyzed a network of interdependencies among bird species that participated in heterospecific foraging associations (flocks) in an evergreen forest site in the Western Ghats, India. We found the flock network to contain a small core of highly important species that other species are strongly dependent on, a pattern seen in many other biological networks. Further, we found that structural importance of species in the network was strongly correlated to functional importance of species at the individual flock level. Finally, comparisons with flock networks from other Asian forests showed that the same taxonomic groups were important in general, suggesting that species importance was an intrinsic trait and not dependent on local ecological conditions. Hence, given a list of species in an area, it may be possible to predict which ones are likely to be important. Our study provides a framework for the investigation of other heterospecific foraging associations and associations among species in other non-trophic contexts.