941 resultados para climatic cooling


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the technical feasibility of a novel cooling system for commercial greenhouses, knowledge of the state of the art in greenhouse cooling is required. An extensive literature review was carried out that highlighted the physical processes of greenhouse cooling and showed the limitations of the conventional technology. The proposed cooling system utilises liquid desiccant technology; hence knowledge of liquid desiccant cooling is also a prerequisite before designing such a system. Extensive literature reviews on solar liquid desiccant regenerators and desiccators, which are essential parts of liquid desiccant cooling systems, were carried out to identify their advantages and disadvantages. In response to the findings, a regenerator and a desiccator were designed and constructed in lab. An important factor of liquid desiccant cooling is the choice of liquid desiccant itself. The hygroscopicity of the liquid desiccant affects the performance of the system. Bitterns, which are magnesium-rich brines derived from seawater, are proposed as an alternative liquid desiccant for cooling greenhouses. A thorough experimental and theoretical study was carried out in order to determine the properties of concentrated bitterns. It was concluded that their properties resemble pure magnesium chloride solutions. Therefore, magnesium chloride solution was used in laboratory experiments to assess the performance of the regenerator and the desiccator. To predict the whole system performance, the physical processes of heat and mass transfer were modelled using gPROMS® advanced process modelling software. The model was validated against the experimental results. Consequently it was used to model a commercials-scale greenhouse in several hot coastal areas in the tropics and sub-tropics. These case studies show that the system, when compared to evaporative cooling, achieves 3oC-5.6oC temperature drop inside the greenhouse in hot and humid places (RH>70%) and 2oC-4oC temperature drop in hot and dry places (50%

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study concerns the properties of the concentrated bittern solutions occurring as by-product from solar salt works, in relation to their potential use as liquid desiccants in cooling systems. Solutions of compositions similar to those of bitterns have been made up in the laboratory, as have concentrated mixtures of MgCl2–MgSO4–H2O. Measurements of vapour pressure have been carried out using an isoteniscope and are reported together with measurements of density and viscosity. Several theoretical models representing these properties are reviewed and compared against the experimental results; the average agreement between theory and experiment is within 5% for vapour pressure and better for the preferred models of the other two properties. Based on these findings, an expression is provided for the equilibrium relative humidity of bitterns as a function of concentration relative to raw seawater. The vapour pressures of bittern solutions are found to be similar to those of solutions containing only magnesium chloride but having the same mass fraction of total salts. Therefore magnesium chloride solution is a reasonable model for bitterns for the purpose of developing the proposed cooling system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have directly measured properties of concentrated seawater brines produced through solar evaporation in salt works. They are sufficiently hygroscopic for use in desiccant cooling cycles which can cool air to 8.0–10.9 °C below ambient. This compares to only 3.8–8.7 °C with simple evaporative cooling. Desiccant cooling can extend the growing seasons of greenhouse crops thus providing an adaptive measure against climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments and theoretical modelling have been carried out to predict the performance of a solar-powered liquid desiccant cooling system for greenhouses. We have tested two components of the system in the laboratory using MgCl2 desiccant: (i) a regenerator which was tested under a solar simulator and (ii) a desiccator which was installed in a test duct. Theoretical models have been developed for both regenerator and desiccator and gave good agreement with the experiments. The verified computer model is used to predict the performance of the whole system during the hot summer months in Mumbai, Chittagong, Muscat, Messina and Havana. Taking examples of temperate, sub-tropical, tropical and heat-tolerant tropical crops (lettuce, soya bean, tomato and cucumber respectively) we estimate the extensions in growing seasons enabled by the system. Compared to conventional evaporative cooling, the desiccant system lowers average daily maximum temperatures in the hot season by 5.5-7.5 °C, sufficient to maintain viable growing conditions for lettuce throughout the year. In the case of tomato, cucumber and soya bean the system enables optimal cultivation through most summer months. It is concluded that the concept is technically viable and deserves testing by means of a pilot installation at an appropriate location.