936 resultados para class III cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cells are inhibited from killing cellular targets by major histocompatibility complex (MHC) class I molecules. In the mouse, this can be mediated by the Ly-49A NK cell receptor that specifically binds the H-2Dd MHC class I molecule, then inhibits NK cell activity. Previous experiments have indicated that Ly-49A recognizes the alpha 1/alpha 2 domains of MHC class I and that no specific MHC-bound peptide appeared to be involved. We demonstrate here that alanine-substituted peptides, having only the minimal anchor motifs, stabilized H-2Dd expression and provided resistance to H-2Dd-transfected, transporter associated with processing (TAP)-deficient cells from lysis by Ly-49A+ NK cells. Peptide-induced resistance was blocked only by an mAb that binds a conformational determinant on H-2Dd. Moreover, stabilization of "empty" H-2Dd heavy chains by exogenous beta 2-microglobulin did not confer resistance. In contrast to data for MHC class I-restricted T cells that are specific for peptides displayed MHC molecules, these data indicate that NK cells are specific for a peptide-induced conformational determinant, independent of specific peptide. This fundamental distinction between NK cells and T cells further implies that NK cells are sensitive only to global changes in MHC class I conformation or expression, rather than to specific pathogen-encoded peptides. This is consistent with the "missing self" hypothesis, which postulates that NK cells survey tissues for normal expression of MHC class I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density (-gNa = approximately 4 mS/cm2) of rapidly inactivating voltage-dependent Na+ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na+ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If -gNa in the axon hillock and initial segment is the same as in the soma [as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2]], then -gNa in the more distal axonal regions is required to be about 40-times that of the soma. (iii) A backward propagating AP in weakly excitable dendrites can be modulated in a graded manner by background synaptic activity. The functional role of weakly excitable dendrites and a more excitable axon for forward synaptic integration and for backward, global, communication between the axon and the dendrites is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CD4 receptor contributes to T-cell activation by coligating major histocompatibility complex class II on antigen presenting cells with the T-cell receptor (TCR)/CD3 complex, and triggering a cascade of signaling events including tyrosine phosphorylation of intracellular proteins. Paradoxically, CD3 cross-linking prior to TCR stimulation results in apoptotic cell death, as does injection of anti-CD4 antibodies in vivo of CD4 ligation by HIV glycoprotein (gp) 120. In this report we investigate the mechanism by which CD4 cross-linking induces cell death. We have found that CD4 cross-linking results in a small but rapid increase in levels of cell surface Fas, a member of the tumor necrosis factor receptor family implicated in apoptotic death and maintenance of immune homeostasis. Importantly, CD4 cross-linking triggered the ability of Fas to function as a death molecule. Subsequent to CD4 cross-linking, CD4+ splenocytes cultured overnight became sensitive to Fas-mediated death. Death was Fas-dependent, as demonstrated by cell survival in the absence of plate-bound anti-Fas antibody, and by the lack of CD4-induced death in cells from Fas-defective lymphoproliferative (lpr) mice. We demonstrate here that CD4 regulates the ability of Fas to induce cell death in Cd4+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graves disease is an autoimmune thyroid disease characterized by the presence of antibodies against the thyrotropin receptor (TSHR), which stimulate the thyroid to cause hyperthyroidism and/or goiter. By immunizing mice with fibroblasts transfected with both the human TSHR and a major histocompatibility complex class II molecule, but not by either alone, we have induced immune hyperthyroidism that has the major humoral and histological features of Graves disease: stimulating TSHR antibodies, thyrotropin binding inhibiting immunoglobulins, which are different from the stimulating TSHR antibodies, increased thyroid hormone levels, thyroid enlargement, thyrocyte hypercellularity, and thyrocyte intrusion into the follicular lumen. The results suggest that the aberrant expression of major histocompatibility complex class II molecules on cells that express a native form of the TSHR can result in the induction of functional anti-TSHR antibodies that stimulate the thyroid. They additionally suggest that the acquisition of antigen-presenting ability on a target cell containing the TSHR can activate T and B cells normally present in an animal and induce a disease with the major features of autoimmune Graves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine specificity of two Ha255-262-specific, Kk-restricted T cells, and of a unique antibody, pSAN, specific for the same peptide-MHC complex. Independently, a model of the Ha255-262-Kk complex was generated through homology modeling and molecular mechanics refinement. The functional data and the model corroborated each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural crest cells arise from the ectoderm and are first recognizable as discrete cells in the chicken embryo when they emerge from the neural tube. Despite the classical view that neural crest precursors are a distinct population lying between epidermis and neuroepithelium, our results demonstrate that they are not a segregated population. Cell lineage analyses have demonstrated that individual precursor cells within the neural folds can give rise to epidermal, neural crest, and neural tube derivatives. Interactions between the neural plate and epidermis can generate neural crest cells, since juxtaposition of these tissues at early stages results in the formation of neural crest cells at the interface. Inductive interactions between the epidermis and neural plate can also result in "dorsalization" of the neural plate, as assayed by the expression of the Wnt transcripts characteristic of the dorsal neural tube. The competence of the neural plate changes with time, however, such that interaction of early neural plate with epidermis generates only neural crest cells, whereas interaction of slightly older neural plate with epidermis generates neural crest cells and Wnt-expressing cells. At cranial levels, neuroepithelial cells can regulate to generate neural crest cells when the endogenous neural folds are removed, probably via interaction of the remaining neural tube with the epidermis. Taken together, these experiments demonstrate that: (i) progenitor cells in the neural folds are multipotent, having the ability to form multiple ectodermal derivatives, including epidermal, neural crest, and neural tube cells; (ii) the neural crest is an induced population that arises by interactions between the neural plate and the epidermis; and (iii) the competence of the neural plate to respond to inductive interactions changes as a function of embryonic age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease seen primarily in elderly persons. It is characterized clinically by the development of tense bullae and by the presence of an antibasement membrane antibody. In BP, the antigens involved in the autoimmunity are epidermal basement membrane peptides BPAg1 and BPAg2. We have compared high resolution typing of major histocompatibility complex class II loci (HLA-DRB1, DQB1) in 21 patients with BP, 17 with ocular cicatricial pemphigoid (OCP), and 22 with oral pemphigoid (OP) to a panel of 218 haplotypes of normal individuals. We found that the three diseases (BP, OCP, and OP) have significant association with DQB1*0301 (P = 0.005, P < 0.0001, and P = 0.001, respectively). The frequencies of alleles DQB1*0302, 0303, and 06, which share a specific amino acid sequence from position 71 to 77 (Thr-Arg-Ala-Glu-Leu-Val-Thr) were also increased (P = 0.01). We suggest that an identical major histocompatibility complex class II allele (DQB1*0301) is a common marker for enhanced susceptibility and that the same amino acid residues in positions 71-77 (DQB1*0301, -0302, -0305, -0602, -0603 alleles) are found in patients with BP, OCP and OP. Our findings propose that the autoimmune response in the three different clinical variants of pemphigoid, involves the recognition by T cells of a class II region of DQB1, bound to a peptide from the basement membrane of conjunctiva, oral mucosa, and skin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Striated muscle is the predominant site of gene expression after i.m. immunization of plasmid DNA, but it is not clear if myocytes or professional antigen-presenting cells (APCs) of hematopoietic origin present the encoded antigens to class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL). To address this issue, CTL responses were assessed in mice engrafted with immune systems that were partially MHC matched with antigen-producing muscle cells. Spleen cells (sc) from immunocompetent F1 H-2bxd mice were infused into H-2b or H-2d mice carrying the severe combined immunodeficiency (scid) mutation, creating F1sc-->H-2b and F1sc-->H-2d chimeras, respectively. Immunization with DNA plasmids encoding the herpes simplex virus gB or the human immunodeficiency virus gp120 glycoproteins elicited antiviral CTL activity. F1sc-->H-2d chimeras responded to an H-2d-restricted gp120 epitope but not an H-2b restricted gB epitope, whereas F1sc-->H-2b chimeras responded to the H-2b but not the H-2d restricted epitope. This pattern of epitope recognition by the sc chimeras indicated that APCs of recipient (scid) origin were involved in initiation of CTL responses. Significantly, CTL responses against epitopes presented by the mismatched donor class I molecules were elicited if F1 bone marrow cells and sc were transferred into scid recipients before or several days to weeks after DNA immunization. Thus, bone marrow-derived APCs are sufficient for class I MHC presentation of viral antigens after i.m. immunization with plasmid DNA. Expression of plasmid DNA by these APCs is probably not a requirement for CTL priming. Instead, they appear to present proteins synthesized by other host cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a region unique to the Salmonella typhimurium chromosome that is essential for virulence in mice. This region harbors at least three genes: two (spiA and spiB) encode products that are similar to proteins found in type III secretion systems, and a third (spiR) encodes a putative regulator. A strain with a mutation in spiA was unable to survive within macrophages but displayed wild-type levels of epithelial cell invasion. The culture supernatants of the spi mutants lacked a modified form of flagellin, which was present in the supernatant of the wild-type strain. This suggests that the Spi secretory apparatus exports a protease, or a protein that can alter the activity of a secreted protease. The "pathogenicity island" harboring the spi genes may encode the virulence determinants that set Salmonella apart from other enteric pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myosins I, a ubiquitous monomeric class of myosins that exhibits actin-based motor properties, are associated with plasma and/or vesicular membranes and have been suggested as players for trafficking events between cell surface and intracellular membranous structures. To investigate the function of myosins 1, we have transfected a mouse hepatoma cell line (BWTG3) with cDNAs encoding the chicken brush border myosin-I (BBMI) and two variants truncated in the motor domain. One variant is deleted of the first 446 amino acids and thereby lacks the ATP binding site, whereas the other is deleted of the entire motor domain and lacks the ATP and actin binding sites. We have observed (i) that significant amounts of the truncated variants are recovered with membrane fractions after cell fractionation, (ii) that they codistribute with a compartment containing alpha2-macroglobulin internalized for 30 min as determined by fluorescent microscopy, (iii) that the production of BBMI-truncated variants impairs the distribution of the acidic compartment and ligands internalized for 30 min, and (iv) that the production of the truncated variant containing the actin binding site decreases the rate of alpha2-macroglobulin degradation whereas the production of the variant lacking the ATP binding site and the actin binding site increases the rate of a2-macroglobulin degradation. These observations indicate that the two truncated variants have a dominant negative effect on the distribution and the function of the endocytic compartments. We propose that an unidentified myosin-I might contribute to the distribution of endocytic compartments in a juxtanuclear position and/or to the regulation of the delivery of ligands to the degradative compartment in BWTG3 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cells expressing specific p58 NK receptors are inhibited from lysing target cells that express human leukocyte antigen (HLA)-C class I major histocompatibility complex molecules. To investigate the interaction between p58 NK receptors and HLA-Cw4, the extracellular domain of the p58 NK receptor specific for HLA-Cw4 was overexpressed in Escherichia coli and refolded from purified inclusion bodies. The refolded NK receptor is a monomer in solution. It interacts specifically with HLA-Cw4, blocking the binding of a p58-Ig fusion protein to HLA-Cw4-expressing cells, but does not block the binding of a p58-Ig fusion protein specific for HLA-Cw3 to HLA-Cw3-expressing cells. The bacterially expressed extracellular domain of HLA-Cw4 heavy chain and beta2-microglobulin were refolded in the presence of a HLA-Cw4-specific peptide. Direct binding between the soluble p58 NK receptor and the soluble HLA-Cw4-peptide complex was observed by native gel electrophoresis. Titration binding assays show that soluble monomeric receptor forms a 1:1 complex with HLA-Cw4, independent of the presence of Zn2+. The formation of complexes between soluble, recombinant molecules indicates that HLA-Cw4 is sufficient for specific ligation by the NK receptor and that neither glycoprotein requires carbohydrate for the interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overactivation of calcium-activated neutral protease (calpain) has been implicated in the pathophysiology of several degenerative conditions, including stroke, myocardial ischemia, neuromuscular degeneration, and cataract formation. Alpha-mercaptoacrylate derivatives (exemplified by PD150606), with potent and selective inhibitory actions against calpain, have been identified. PD150606 exhibits the following characteristics: (i) Ki values for mu- and m-calpains of 0.21 microM and 0.37 microM, respectively, (ii) high specificity for calpains relative to other proteases, (iii) uncompetitive inhibition with respect to substrate, and (iv) it does not shield calpain against inactivation by the active-site inhibitor trans-(epoxysuccinyl)-L-leucyl-amido-3-methylbutane, suggesting a nonactive site action for PD150606. The recombinant calcium-binding domain from each of the large or small subunits of mu-calpain was found to interact with PD150606. In low micromolar range, PD15O6O6 inhibited calpain activity in two intact cell systems. The neuroprotective effects of this class of compound were also demonstrated by the ability of PD150606 to attenuate hypoxic/hypoglycemic injury to cerebrocortical neurons in culture and excitotoxic injury to Purkinje cells in cerebellar slices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lack of efficient mechanisms for stable genetic transformation of medically important insects, such as anopheline mosquitoes, is the single most important impediment to progress in identifying novel control strategies. Currently available techniques for foreign gene expression in insect cells in culture lack the benefit of stable inheritance conferred by integration. To overcome this problem, a new class of pantropic retroviral vectors has been developed in which the amphotropic envelope is completely replaced by the G glycoprotein of vesicular stomatitis virus. The broadened host cell range of these particles allowed successful entry, integration, and expression of heterologous genes in cultured cells of Anopheles gambiae, the principle mosquito vector responsible for the transmission of over 100 million cases of malaria each year. Mosquito cells in culture infected with a pantropic vector expressing hygromycin phosphotransferase from the Drosophila hsp70 promoter were resistant to the antibiotic hygromycin B. Integrated provirus was detected in infected mosquito cell clones grown in selective media. Thus, pantropic retroviral vectors hold promise as a transformation system for mosquitoes in vivo.