924 resultados para chaîne de Markov
Resumo:
Malayalam is one of the 22 scheduled languages in India with more than 130 million speakers. This paper presents a report on the development of a speaker independent, continuous transcription system for Malayalam. The system employs Hidden Markov Model (HMM) for acoustic modeling and Mel Frequency Cepstral Coefficient (MFCC) for feature extraction. It is trained with 21 male and female speakers in the age group ranging from 20 to 40 years. The system obtained a word recognition accuracy of 87.4% and a sentence recognition accuracy of 84%, when tested with a set of continuous speech data.
Resumo:
Development of Malayalam speech recognition system is in its infancy stage; although many works have been done in other Indian languages. In this paper we present the first work on speaker independent Malayalam isolated speech recognizer based on PLP (Perceptual Linear Predictive) Cepstral Coefficient and Hidden Markov Model (HMM). The performance of the developed system has been evaluated with different number of states of HMM (Hidden Markov Model). The system is trained with 21 male and female speakers in the age group ranging from 19 to 41 years. The system obtained an accuracy of 99.5% with the unseen data
Resumo:
A connected digit speech recognition is important in many applications such as automated banking system, catalogue-dialing, automatic data entry, automated banking system, etc. This paper presents an optimum speaker-independent connected digit recognizer forMalayalam language. The system employs Perceptual Linear Predictive (PLP) cepstral coefficient for speech parameterization and continuous density Hidden Markov Model (HMM) in the recognition process. Viterbi algorithm is used for decoding. The training data base has the utterance of 21 speakers from the age group of 20 to 40 years and the sound is recorded in the normal office environment where each speaker is asked to read 20 set of continuous digits. The system obtained an accuracy of 99.5 % with the unseen data.
Resumo:
A primary medium for the human beings to communicate through language is Speech. Automatic Speech Recognition is wide spread today. Recognizing single digits is vital to a number of applications such as voice dialling of telephone numbers, automatic data entry, credit card entry, PIN (personal identification number) entry, entry of access codes for transactions, etc. In this paper we present a comparative study of SVM (Support Vector Machine) and HMM (Hidden Markov Model) to recognize and identify the digits used in Malayalam speech.
Resumo:
In this thesis, certain continuous time inventory problems with positive service time under local purchase guided by N/T-policy are analysed. In most of the cases analysed, we arrive at stochastic decomposition of system states, that is, the joint distribution of the system states is obtained as the product of marginal distributions of the components. The thesis is divided into ve chapters
Resumo:
In many situations probability models are more realistic than deterministic models. Several phenomena occurring in physics are studied as random phenomena changing with time and space. Stochastic processes originated from the needs of physicists.Let X(t) be a random variable where t is a parameter assuming values from the set T. Then the collection of random variables {X(t), t ∈ T} is called a stochastic process. We denote the state of the process at time t by X(t) and the collection of all possible values X(t) can assume, is called state space
Resumo:
Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.
Resumo:
Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly supplying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a reinforcement learning algorithm that learns profitable market-making strategies when run on this model. The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning results for two separate real stocks.
Resumo:
This paper presents a model and analysis of a synchronous tandem flow line that produces different part types on unreliable machines. The machines operate according to a static priority rule, operating on the highest priority part whenever possible, and operating on lower priority parts only when unable to produce those with higher priorities. We develop a new decomposition method to analyze the behavior of the manufacturing system by decomposing the long production line into small analytically tractable components. As a first step in modeling a production line with more than one part type, we restrict ourselves to the case where there are two part types. Detailed modeling and derivations are presented with a small two-part-type production line that consists of two processing machines and two demand machines. Then, a generalized longer flow line is analyzed. Furthermore, estimates for performance measures, such as average buffer levels and production rates, are presented and compared to extensive discrete event simulation. The quantitative behavior of the two-part type processing line under different demand scenarios is also provided.
Resumo:
The Hardy-Weinberg law, formulated about 100 years ago, states that under certain assumptions, the three genotypes AA, AB and BB at a bi-allelic locus are expected to occur in the proportions p2, 2pq, and q2 respectively, where p is the allele frequency of A, and q = 1-p. There are many statistical tests being used to check whether empirical marker data obeys the Hardy-Weinberg principle. Among these are the classical xi-square test (with or without continuity correction), the likelihood ratio test, Fisher's Exact test, and exact tests in combination with Monte Carlo and Markov Chain algorithms. Tests for Hardy-Weinberg equilibrium (HWE) are numerical in nature, requiring the computation of a test statistic and a p-value. There is however, ample space for the use of graphics in HWE tests, in particular for the ternary plot. Nowadays, many genetical studies are using genetical markers known as Single Nucleotide Polymorphisms (SNPs). SNP data comes in the form of counts, but from the counts one typically computes genotype frequencies and allele frequencies. These frequencies satisfy the unit-sum constraint, and their analysis therefore falls within the realm of compositional data analysis (Aitchison, 1986). SNPs are usually bi-allelic, which implies that the genotype frequencies can be adequately represented in a ternary plot. Compositions that are in exact HWE describe a parabola in the ternary plot. Compositions for which HWE cannot be rejected in a statistical test are typically “close" to the parabola, whereas compositions that differ significantly from HWE are “far". By rewriting the statistics used to test for HWE in terms of heterozygote frequencies, acceptance regions for HWE can be obtained that can be depicted in the ternary plot. This way, compositions can be tested for HWE purely on the basis of their position in the ternary plot (Graffelman & Morales, 2008). This leads to nice graphical representations where large numbers of SNPs can be tested for HWE in a single graph. Several examples of graphical tests for HWE (implemented in R software), will be shown, using SNP data from different human populations
Resumo:
Completar los objetivos de las fases anteriores: comportamientos de los grupos de alumnos según el profesor y la naturaleza de cada grupo. Diferencias del nivel alcanzado en BUP y en COU. Contrastar la homogeneidad o no del comportamiento global en teoría y en la práctica. Escuelas y Colegios Universitarios de Granada y Bilbao. Centros de EGB y Bachillerato de Granada, Bilbao y Málaga. Centros privados y centros de enseñanza profesional. Centros Experimentales de Bachillerato pertenecientes al ICE. Aplicaciones experimentales del análisis de interacción, de la Universidad de Stanford, ampliado mediante las técnicas de las cadenas de Markov. Análisis de la adquisición de objetivos de la taxonomía NLSMA, adaptada en BUP y COU. Pruebas realizadas por los alumnos. Observaciones sistematizadas. Matrices de Markov. Test de hipótesis para cadenas finitas. Test de estacionaridad en cadenas finitas de Markov. Análisis multivariante. Fiabilidad en el método de interacción Amidon-Flanders. Tratamiento en ordenador. Chi cuadrado. Deducen que las observaciones de Flanders estan hechas sobre clases no muy activas. Relación entre el equilibrio-iniciativa-respuesta del profesor y la conducta de iniciativa de los alumnos. Reacción del profesor cuando los alumnos dejan de intervenir. Importancia del contenido. Homogeneidad de varianza entre todos los grupos. La deducción en COU ha pasado a ser homogénea, mientras que hay diferencias en los niveles medios de expresión y aplicación como en segundo de BUP. Los factores 'interpretación' y 'automatismo' por un lado, y 'expresión' y 'aplicación' por otro, están agrupados entre sí; mientras que 'deducción' presenta en principio un carácter más aislado. Sin embargo en COU, los factores agrupados son: interpretación, aplicación, automatismos y deducción. Clasificación de las pruebas realizadas por los alumnos de acuerdo a una taxonomía.
Resumo:
The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics