949 resultados para cement shade


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most suitable temperature range for domestic purposes is about 200C to 260C .Besides, both cold and hot water appear to be essential frequently for industrial purposes. In summer bringing down the water temperature at a comfortable range causes significant energy consumption. This project aims at saving energy to control water temperature by making water tank insulated .Therefore applying better insulation system which would reduce the disparity between the desired temperature and the actual temperature and hence saving energy significantly. Following the investigation, this project used cotton jacket to insulate the tank and the tank was placed under a paddy straw shade with a view to attaining the maximum energy saving. Finally, it has been found that reduction in energy consumption is to be about 50-60% which is quite satisfactory. Since comfortable temperature range varies from person to person this project thus combines insulating effect with automatic water heater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report was prepared for Lat 27 Pty Ltd for the purpose of conducting a City Centre Public Realm and Active Transport Study for Urban Renewal Brisbane, Brisbane City Council. In this review, we highlight some key learnings and recommendations from innovative projects across the globe to inform public realm design and help facilitate active transport in subtropical Brisbane. Traditionally, Australian cities have been have been based on northern European models. This report is informed by the view that planners and urban designers must look beyond that paradigm to redefine and re-conceptualise our city in a different way, one that values our unique local identity and climate. In re-designing Brisbane’s public realm, therefore, design interventions and responses must celebrate our unique identity and outdoor lifestyle and address the subtropical climate's reality of life in warm humid summers and cool dry winters. The current period of rapid urban change, and the imperative to adapt to climate change, together offer an opportunity to prioritise and integrate design features that provide shade and shelter from sun and summer rain, open and permeable urban environments that facilitate cooling air movement, and connections to water and nature, so that the urban built form co-exists within an inviting, functional and memorable natural landscape. To inform this transformation, this review provides insight into international experiences and best practices. To date, although there is much practice-based knowledge, academic studies outlining learnings and recommendations from case studies (especially in a subtropical context) remain rare. Thus, a range of sources (industry reports, websites, journal articles and books) have been utilised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional shading design principles guide the vertical and horizontal orientation of fins, louvres and awnings being applied to orthogonal planar façades. Due to doubly curved envelopes characterising many contemporary designs, these rules of thumb are now not always applicable. Operable blinds attempt to regulate the fluctuating luminance of daylight and aid in shading direct sunlight. Mostly they remain closed, as workers are commonly too preoccupied to continually adjust them so a reliance on electrically powered lights remains a preference. To remedy these problems, the idea of what it is to sustainable enclose space is reconsidered through the geometric and kinetic optimisation of a parametric skin, with sunlight responsive modules that regulate interior light levels. This research concludes with an optimised design and also defines some unique metrics to gauge the design’s performance in terms of, the amount of exterior unobstructed view, its ability to shade direct sunlight and, its daylight glare probability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: There are some limited reports, based on questionnaire data, which suggest that outdoor activity decreases the risk of myopia in children and may offset the myopia risk associated with prolonged near work. The aim of this study was to explore the relationship between near work, indoor illumination, daily sunlight and ultraviolet (UV) exposure in emmetropic and myopic University students, given that University students perform significant amounts of near work and as a group have a high prevalence of myopia. Methods: Participants were 35 students, aged 17 to 25 years who were classified as being emmetropic (n=13), or having stable (n=12) or progressing myopia (n=10). During waking hours on three separate days participants wore a light sensor data logger (HOBO) and a polysulphone UV dosimeter; these devices measured daily illuminance and accumulative UV exposure respectively; participants also completed a daily activity log. Results: No significant between group differences were observed for average daily illuminance (p=0.732), number of hours per day spent in sunlight (p=0.266), outdoor shade (p=0.726), bright indoor/dim outdoor light (p=0.574) or dim room illumination (p=0.484). Daily UV exposure was significantly different across the groups (p=0.003); with stable myopes experiencing the greatest UV exposure (versus emmetropes p=0.002; versus progressing myopes p=0.004). Conclusions: The current literature suggests there is a link between myopia protection and spending time outdoors in children. Our data provides some evidence of this relationship in young adults and highlights the need for larger studies to further investigate this relationship longitudinally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Total hip arthroplasty (THA) is a commonly performed procedure and numbers are increasing with ageing populations. One of the most serious complications in THA are surgical site infections (SSIs), caused by pathogens entering the wound during the procedure. SSIs are associated with a substantial burden for health services, increased mortality and reduced functional outcomes in patients. Numerous approaches to preventing these infections exist but there is no gold standard in practice and the cost-effectiveness of alternate strategies is largely unknown. Objectives The aim of this project was to evaluate the cost-effectiveness of strategies claiming to reduce deep surgical site infections following total hip arthroplasty in Australia. The objectives were: 1. Identification of competing strategies or combinations of strategies that are clinically relevant to the control of SSI related to hip arthroplasty 2. Evidence synthesis and pooling of results to assess the volume and quality of evidence claiming to reduce the risk of SSI following total hip arthroplasty 3. Construction of an economic decision model incorporating cost and health outcomes for each of the identified strategies 4. Quantification of the effect of uncertainty in the model 5. Assessment of the value of perfect information among model parameters to inform future data collection Methods The literature relating to SSI in THA was reviewed, in particular to establish definitions of these concepts, understand mechanisms of aetiology and microbiology, risk factors, diagnosis and consequences as well as to give an overview of existing infection prevention measures. Published economic evaluations on this topic were also reviewed and limitations for Australian decision-makers identified. A Markov state-transition model was developed for the Australian context and subsequently validated by clinicians. The model was designed to capture key events related to deep SSI occurring within the first 12 months following primary THA. Relevant infection prevention measures were selected by reviewing clinical guideline recommendations combined with expert elicitation. Strategies selected for evaluation were the routine use of pre-operative antibiotic prophylaxis (AP) versus no use of antibiotic prophylaxis (No AP) or in combination with antibiotic-impregnated cement (AP & ABC) or laminar air operating rooms (AP & LOR). The best available evidence for clinical effect size and utility parameters was harvested from the medical literature using reproducible methods. Queensland hospital data were extracted to inform patients’ transitions between model health states and related costs captured in assigned treatment codes. Costs related to infection prevention were derived from reliable hospital records and expert opinion. Uncertainty of model input parameters was explored in probabilistic sensitivity analyses and scenario analyses and the value of perfect information was estimated. Results The cost-effectiveness analysis was performed from a health services perspective using a hypothetical cohort of 30,000 THA patients aged 65 years. The baseline rate of deep SSI was 0.96% within one year of a primary THA. The routine use of antibiotic prophylaxis (AP) was highly cost-effective and resulted in cost savings of over $1.6m whilst generating an extra 163 QALYs (without consideration of uncertainty). Deterministic and probabilistic analysis (considering uncertainty) identified antibiotic prophylaxis combined with antibiotic-impregnated cement (AP & ABC) to be the most cost-effective strategy. Using AP & ABC generated the highest net monetary benefit (NMB) and an incremental $3.1m NMB compared to only using antibiotic prophylaxis. There was a very low error probability that this strategy might not have the largest NMB (<5%). Not using antibiotic prophylaxis (No AP) or using both antibiotic prophylaxis combined with laminar air operating rooms (AP & LOR) resulted in worse health outcomes and higher costs. Sensitivity analyses showed that the model was sensitive to the initial cohort starting age and the additional costs of ABC but the best strategy did not change, even for extreme values. The cost-effectiveness improved for a higher proportion of cemented primary THAs and higher baseline rates of deep SSI. The value of perfect information indicated that no additional research is required to support the model conclusions. Conclusions Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalised patients, save lives and enhance resource allocation. By implementing a more beneficial infection control strategy, scarce health care resources can be used more efficiently to the benefit of all members of society. The results of this project provide Australian policy makers with key information about how to efficiently manage risks of infection in THA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Camp Kilda (CK) is regarded as being a quality early childhood center, and has many features you would typically expect to see in settings across Australia. The children are busily engaged in hands-on activity, playing indoors and outdoors, in the sandpit, under the shade of a big mango tree. The learning environment is planned to offer a variety of activities, including dramatic play, climbing equipment, balls, painting, drawing, clay, books, blocks, writing materials, scissors, manipulative materials. The children are free to access all the materials, and they play either individually or in small groups. The teachers encourage and stimulate the children’s learning, through interactions and thoughtful planning. Learning and assessment at CK is embedded within the cultural and social contexts of the children and their community. Children’s learning is made visible through a rich variety of strategies, including recorded observations, work samples, photographs, and other artifacts. Parents are actively encouraged to build on these “stories” of their children. Planning is based around the teachers’ analysis of the information they gather daily as they interact with the children and their families.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. To compare radiological records of 90 consecutive patients who underwent cemented total hip arthroplasty (THA) with or without use of the Rim Cutter to prepare the acetabulum. Methods. The acetabulum of 45 patients was prepared using the Rim Cutter, whereas the device was not used in the other 45 patients. Postoperative radiographs were evaluated using a digital templating system to measure (1) the positions of the operated hips with respect to the normal, contralateral hips (the centre of rotation of the socket, the height of the centre of rotation from the teardrop, and lateralisation of the centre of rotation from the teardrop) and (2) the uniformity and width of the cement mantle in the 3 DeLee Charnley acetabular zones, and the number of radiolucencies in these zones. Results. The study group showed improved radiological parameters and were closer to the anatomic centre of rotation both vertically (1.5 vs. 3.7 mm, p<0.001) and horizontally (1.8 vs. 4.4 mm, p<0.001) and had consistently thicker and more uniform cement mantles (p<0.001). There were 2 radiolucent lines in the control group but none in the study group. Conclusion. The Rim Cutter resulted in more accurate placement of the centre of rotation of a cemented prosthetic socket, and produced a thicker, more congruent cement mantle with fewer radiolucent lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New materials technology has provided the potential for the development of an innovative Hybrid Composite Floor Plate System (HCFPS) with many desirable properties, such as light weight, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions. HCFPS is configured such that the positive inherent properties of individual component materials are combined to offset any weakness and achieve optimum performance. Research has been carried out using extensive Finite Element (FE) computer simulations supported by experimental testing. Both the strength and serviceability requirements have been established for this lightweight floor plate system. This paper presents some of the research towards the development of HCFPS along with a parametric study to select suitable span lengths.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the dynamic performance of an innovative Hybrid Composite Floor Plate System (HCFPS), composed of Polyurethane (PU) core, outer layers of Glass–fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Experimental testing included heel impact and walking tests for 3200 mm span HCFPS panels. FE models of the HCFPS were developed using the FE program ABAQUS and validated with experimental results. HCFPS is a light-weight high frequency floor system with excellent damping ratio of 5% (bare floor) due to the central PU core. Parametric studies were conducted using the validated FE models to investigate the dynamic response of the HCFPS and to identify characteristics that influence acceleration response under human induced vibration in service. This vibration performance was compared with recommended acceptable perceptibility limits. The findings of this study show that HCFPS can be used in residential and office buildings as a light-weight floor system, which does not exceed the perceptible thresholds due to human induced vibrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Surgical site infection (SSI) is associated with substantial costs for health services, reduced quality of life, and functional outcomes. The aim of this study was to evaluate the cost-effectiveness of strategies claiming to reduce the risk of SSI in hip arthroplasty in Australia. Methods: Baseline use of antibiotic prophylaxis (AP) was compared with no antibiotic prophylaxis (no AP), antibiotic-impregnated cement (AP þ ABC), and laminar air operating rooms (AP þ LOR). A Markov model was used to simulate long-term health and cost outcomes of a hypothetical cohort of 30,000 total hip arthroplasty patients from a health services perspective. Model parameters were informed by the best available evidence. Uncertainty was explored in probabilistic sensitivity and scenario analyses. Results: Stopping the routine use of AP resulted in over Australian dollars (AUD) $1.5 million extra costs and a loss of 163 quality-adjusted life years (QALYs). Using antibiotic cement in addition to AP (AP þ ABC)generated an extra 32 QALYs while saving over AUD $123,000. The use of laminar air operating rooms combined with routine AP (AP þ LOR) resulted in an AUD $4.59 million cost increase and 127 QALYs lost compared with the baseline comparator. Conclusion: Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalized patients, save lives, and enhance resource allocation. Based on this evidence, the use of laminar air operating rooms is not recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between 1995 and 2003, 129 cemented primary THRs were performed using full acetabular impaction grafting to reconstruct acetabular deficiencies. These were classified as cavitary in 74 and segmental in 55 hips. Eighty-one patients were reviewed at mean 9.1 (6.2-14.3) years post-operatively. There were seven acetabular component revisions due to aseptic loosening, and a further 11 cases that had migrated >5mm or tilted >5° on radiological review - ten of which reported no symptoms. Kaplan-Meier analysis of revisions for aseptic loosening demonstrates 100% survival at nine years for cavitary defects compared to 82.6% for segmental defects. Our results suggest that the medium-term survival of this technique is excellent when used for purely cavitary defects but less predictable when used with large rim meshes in segmental defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ancient sandstones include important reservoirs for hydrocarbons (oil and gas), but, in many cases, their ability to serve as reservoirs is heavily constrained by the effects of carbonate cements on porosity and permeability. This study investigated the controls on distribution and abundance of carbonate cements within the Jurassic Plover Formation, Browse Basin, North West Shelf, Australia. Samples were analysed petrographically with point counting of 59 thin sections and mineralogically with x-ray diffraction from two wells within the Torosa Gas Field. Selected samples were also analysed for stable isotopes of O and C. Sandstones are classified into eleven groups. Most abundant are quartzarenites and then calcareous quartzarenites. Lithology ranged between sandstones consisting of mostly quartz with scant or no carbonate in the form of cement or allochems, to sandstones with as much as 40% carbonate. The major sources of carbonate cement in Torosa 1 and Torosa 4 sandstones were found to be early, shallow marine diagenetic processes (including cementation), followed by calcite cementation and recrystallisation of cements and allochems during redistribution by meteoric waters. Blocky and sparry calcite cements, indicative of meteoric environments on the basis of stable isotope values and palaeotemperature assessment, overprinted the initial shallow marine cement phase in all cases and meteoric cements are dominant. Torosa 4 was influenced more by marine settings than Torosa 1, and thus has the greater potential for calcite cement. The relatively low compaction of calcite-cemented sandstones and the stable isotope data suggest deep burial cementation was not a major factor. Insufficient volcanic rock fragments or authigenic clay content infers alteration of feldspars was not a major source of calcite. Very little feldspar is present, altered or otherwise. Hence, increased alkalinity from feldspar dissolution is not a contributing factor in cement formation. Increased alkalinity from bacterial sulphate reduction in organic–rich fine sediments may have driven limited cementation in some samples. The main definable and significant source of diagenetic marine calcite cement originated from original marine cements and the nearby dissolution of biogenic sources (allochems) at relatively shallow depths. Later diagenetic fluids emplaced minor dolomite, but this cement did not greatly affect the reservoir quality in the samples studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the modern built environment, building construction and demolition consume a large amount of energy and emits greenhouse gasses due to widely used conventional construction materials such as reinforced and composite concrete. These materials consume high amount of natural resources and possess high embodied energy. More energy is required to recycle or reuse such materials at the cessation of use. Therefore, it is very important to use recyclable or reusable new materials in building construction in order to conserve natural resources and reduce the energy and emissions associated with conventional materials. Advancements in materials technology have resulted in the introduction of new composite and hybrid materials in infrastructure construction as alternatives to the conventional materials. This research project has developed a lightweight and prefabricatable Hybrid Composite Floor Plate System (HCFPS) as an alternative to conventional floor system, with desirable properties, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fiber Reinforced Cement (GRC) and steel laminates at tensile regions. This research work explored the structural adequacy and performance characteristics of hybridised GRC, PU and steel laminate for the development of HCFPS. Performance characteristics of HCFPS were investigated using Finite Element (FE) method simulations supported by experimental testing. Parametric studies were conducted to develop the HCFPS to satisfy static performance using sectional configurations, spans, loading and material properties as the parameters. Dynamic response of HCFPS floors was investigated by conducting parametric studies using material properties, walking frequency and damping as the parameters. Research findings show that HCFPS can be used in office and residential buildings to provide acceptable static and dynamic performance. Design guidelines were developed for this new floor system. HCFPS is easy to construct and economical compared to conventional floor systems as it is lightweight and prefabricatable floor system. This floor system can also be demounted and reused or recycled at the cessation of use due to its component materials.