916 resultados para cellular disruption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of three bis[(tert-butoxy)carbonyl]-protected (tetramine)dichloroplatinum complexes 2a – c of formula cis-[PtCl2(LL)] and of their cationic deprotected analogs 3a – c and their evaluation with respect to in vitro cytotoxicity, intramolecular stability, DNA binding, and cellular uptake is reported. The synthesis comprises the complexation of K2[PtCl4] with di-N-protected tetramines 1a – c to give 2a – c and subsequent acidolysis, yielding 3a – c. The cytotoxicity of the complexes is in direct relation to the length of the polyamine. Complexes 3a – c display a significant higher affinity for CT DNA as well as for cellular DNA in A2780 cells than cisplatin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decisions require careful weighing of the risks and benefits associated with a choice. Some people need to be offered large rewards to balance even minimal risks, whereas others take great risks in the hope for an only minimal benefit. We show here that risk-taking is a modifiable behavior that depends on right hemisphere prefrontal activity. We used low-frequency, repetitive transcranial magnetic stimulation to transiently disrupt left or right dorsolateral prefrontal cortex (DLPFC) function before applying a well known gambling paradigm that provides a measure of decision-making under risk. Individuals displayed significantly riskier decision-making after disruption of the right, but not the left, DLPFC. Our findings suggest that the right DLPFC plays a crucial role in the suppression of superficially seductive options. This confirms the asymmetric role of the prefrontal cortex in decision-making and reveals that this fundamental human capacity can be manipulated in normal subjects through cortical stimulation. The ability to modify risk-taking behavior may be translated into therapeutic interventions for disorders such as drug abuse or pathological gambling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca2+ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca2+ sequestration that prevents excessive Ca2+ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca2+ signals in cells that were able to survive after PLY attack. Intracellular Ca2+ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca2+ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES This study sought to describe the frequency and clinical impact of acute scaffold disruption and late strut discontinuity of the second-generation Absorb bioresorbable polymeric vascular scaffolds (Absorb BVS, Abbott Vascular, Santa Clara, California) in the ABSORB (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions) cohort B study by optical coherence tomography (OCT) post-procedure and at 6, 12, 24, and 36 months. BACKGROUND Fully bioresorbable scaffolds are a novel approach to treatment for coronary narrowing that provides transient vessel support with drug delivery capability without the long-term limitations of metallic drug-eluting stents. However, a potential drawback of the bioresorbable scaffold is the potential for disruption of the strut network when overexpanded. Conversely, the structural discontinuity of the polymeric struts at a late stage is a biologically programmed fate of the scaffold during the course of bioresorption. METHODS The ABSORB cohort B trial is a multicenter single-arm trial assessing the safety and performance of the Absorb BVS in the treatment of 101 patients with de novo native coronary artery lesions. The current analysis included 51 patients with 143 OCT pullbacks who underwent OCT at baseline and follow-up. The presence of acute disruption or late discontinuities was diagnosed by the presence on OCT of stacked, overhung struts or isolated intraluminal struts disconnected from the expected circularity of the device. RESULTS Of 51 patients with OCT imaging post-procedure, acute scaffold disruption was observed in 2 patients (3.9%), which could be related to overexpansion of the scaffold at the time of implantation. One patient had a target lesion revascularization that was presumably related to the disruption. Of 49 patients without acute disruption, late discontinuities were observed in 21 patients. There were no major adverse cardiac events associated with this finding except for 1 patient who had a non-ischemia-driven target lesion revascularization. CONCLUSIONS Acute scaffold disruption is a rare iatrogenic phenomenon that has been anecdotally associated with anginal symptoms, whereas late strut discontinuity is observed in approximately 40% of patients and could be viewed as a serendipitous OCT finding of a normal bioresorption process without clinical implications. (ABSORB Clinical Investigation, Cohort B [ABSORB B]; NCT00856856).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coumarins are extensively studied anticoagulants that exert additional effects such as anticancerogenic and even anti-inflammatory. In order to find new drugs with anticancer activities, we report here the synthesis and the structural analysis of new coumarin derivatives which combine the coumarin core and five member heterocycles in hydrazinylidene-chroman-2,4-diones. The derivatives were prepared by derivatization of the appropriate heterocyclic amines which were used as electrophiles to attack the coumarin ring. The structures were characterized by spectroscopic techniques including IR, NMR, 2D-NMR and MS. These derivatives were further characterized especially in terms of a potential cytotoxic and apoptogenic effect in several cancer cell lines including the breast and prostate cancer cell lines MCF-7, MDA-MB-231, PC-3, LNCaP, and the monocytic leukemia cell line U937. Cell viability was determined after 48 h and 72 h of treatment with the novel compounds by MTT assay and the 50% inhibitory concentrations (EC50 values) were determined. Out of the 8 novel compounds screened for reduced cell viability, 4c, 4d and 4e were found to be the most promising and effective ones having EC50 values that were several fold reduced when compared to the reference substance 4-hydroxycoumarin. However, the effects were cancer cell line dependent. The breast cancer MDA-MB-231 cells, the prostate cancer LNCaP cells, and U937 cells were most sensitive, MCF-7 cells were less sensitive, and PC-3 cells were more resistant. Reduced cell viability was accompanied by increased apoptosis as shown by PARP-1 cleavage and reduced activity of the survival protein kinase Akt. In summary, this study has identified three novel coumarin derivatives that in comparison to 4-hydroxycoumarin have a higher efficiency to reduce cancer cell viability and trigger apoptosis and therefore may represent interesting novel drug candidates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunological homeostasis in the respiratory tract is thought to require balanced interactions between networks of dendritic cell (DC) subsets in lung microenvironments in order to regulate tolerance or immunity to inhaled antigens and pathogens. Influenza A virus (IAV) poses a serious threat of long-term disruption to this balance through its potent pro-inflammatory activities. In this study, we have used a BALB/c mouse model of A/PR8/34 H1N1 Influenza Type A Virus infection to examine the effects of IAV on respiratory tissue DC subsets during the recovery phase following clearance of the virus. In adult mice, we found differences in the kinetics and activation states of DC residing in the airway mucosa (AMDC) compared to those in the parenchymal lung (PLDC) compartments. A significant depletion in the percentage of AMDC was observed at day 4 post-infection that was associated with a change in steady-state CD11b+ and CD11b- AMDC subset frequencies and significantly elevated CD40 and CD80 expression and that returned to baseline by day 14 post-infection. In contrast, percentages and total numbers of PLDC were significantly elevated at day 14 and remained so until day 21 post-infection. Accompanying this was a change in CD11b+and CD11b- PLDC subset frequencies and significant increase in CD40 and CD80 expression at these time points. Furthermore, mice infected with IAV at 4 weeks of age showed a significant increase in total numbers of PLDC, and increased CD40 expression on both AMDC and PLDC, when analysed as adults 35 days later. These data suggest that the rate of recovery of DC populations following IAV infection differs in the mucosal and parenchymal compartments of the lung and that DC populations can remain disrupted and activated for a prolonged period following viral clearance, into adulthood if infection occurred early in life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effects of the androgenic endocrine disruptor 17β-trenbolone on the sexual development of zebrafish (Danio rerio) with special emphasis on the question of whether adverse outcomes of developmental exposure are reversible or persistent. An exposure scenario including a recovery phase was chosen to assess the potential reversibility of androgenic effects. Zebrafish were exposed to environmentally relevant concentrations of 17β-trenbolone (1 ng/L-30 ng/L) from fertilization until completion of gonad sexual differentiation (60 d posthatch). Thereafter, exposure was either followed by 40 d of recovery in clean water or continued until 100 d posthatch, the age when zebrafish start being able to reproduce. Fish exposed for 100 d to 10 ng/L or 30 ng/L 17β-trenbolone were masculinized at different biological effect levels, as evidenced from a concentration-dependent shift of the sex ratio toward males as well as a significantly increased maturity of testes. Gonad morphological masculinization occurred in parallel with decreased vitellogenin concentrations in both sexes. Changes of brain aromatase (cyp19b) mRNA expression showed no consistent trend with respect to either exposure duration or concentration. Gonad morphological masculinization as well as the decrease of vitellogenin persisted after depuration over 40 d in clean water. This lack of recovery suggests that androgenic effects on sexual development of zebrafish are irreversible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1-10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides the suggested role of a putative endocannabinoid membrane transporter mediating the cellular uptake of the endocannabinoid anandamide (AEA), this process is intrinsically coupled to AEA degradation by the fatty acid amide hydrolase (FAAH). Differential blockage of each mechanism is possible using specific small-molecule inhibitors. Starting from the natural product-derived 2E,4E-dodecadiene scaffold previously shown to interact with the endocannabinoid system (ECS), a series of diverse N-alkylcarbamates were prepared with the aim of generating novel ECS modulators. While being inactive at cannabinoid receptors and monoacylglycerol lipase, these N-alkylcarbamates showed potent to ultrapotent picomolar FAAH inhibition in U937 cells. Overall, a highly significant correlation (Spearman's rho=0.91) was found between the inhibition of FAAH and AEA cellular uptake among 54 compounds. Accordingly, in HMC-1 cells lacking FAAH expression the effect on AEA cellular uptake was dramatically reduced. Unexpectedly, 3-(4,5-dihydrothiazol-2-yl)phenyl carbamates and the 3-(1,2,3-thiadiazol-4-yl)phenyl carbamates WOBE490, WOBE491 and WOBE492 showed a potentiation of cellular AEA uptake inhibition in U937 cells, resulting in unprecedented femtomolar (hyperpotent) IC50 values. Potential methodological issues and the role of cellular accumulation of selected probes were investigated. It is shown that albumin impacts the potency of specific N-alkylcarbamates and, more importantly, that accumulation of FAAH inhibitors can significantly increase their effect on cellular AEA uptake. Taken together, this series of N-alkylcarbamates shows a FAAH-dependent inhibition of cellular AEA uptake, which can be strongly potentiated using specific head group modifications. These findings provide a rational basis for the development of hyperpotent AEA uptake inhibitors mediated by ultrapotent FAAH inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.