953 resultados para calcium cell level


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Changes in CD4 cell counts are poorly documented in individuals with low or moderate-level viremia while on antiretroviral treatment (ART) in resource-limited settings. We assessed the impact of on-going HIV-RNA replication on CD4 cell count slopes in patients treated with a first-line combination ART. Method Naïve patients on a first-line ART regimen with at least two measures of HIV-RNA available after ART initiation were included in the study. The relationships between mean CD4 cell count change and HIV-RNA at 6 and 12 months after ART initiation (M6 and M12) were assessed by linear mixed models adjusted for gender, age, clinical stage and year of starting ART. Results 3,338 patients were included (14 cohorts, 64% female) and the group had the following characteristics: a median follow-up time of 1.6 years, a median age of 34 years, and a median CD4 cell count at ART initiation of 107 cells/μL. All patients with suppressed HIV-RNA at M12 had a continuous increase in CD4 cell count up to 18 months after treatment initiation. By contrast, any degree of HIV-RNA replication both at M6 and M12 was associated with a flat or a decreasing CD4 cell count slope. Multivariable analysis using HIV-RNA thresholds of 10,000 and 5,000 copies confirmed the significant effect of HIV-RNA on CD4 cell counts both at M6 and M12. Conclusion In routinely monitored patients on an NNRTI-based first-line ART, on-going low-level HIV-RNA replication was associated with a poor immune outcome in patients who had detectable levels of the virus after one year of ART.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocyte growth factor (HGF) is involved in development and regeneration of the lungs. Human HGF, which was expressed specifically by alveolar epithelial type II cells after gene transfer, attenuated the bleomycin-induced pulmonary fibrosis in an animal model. As there are also regions that appear morphologically unaffected in fibrosis, the effects of this gene transfer to normal lungs is of interest. In vitro studies showed that HGF inhibits the formation of the basal lamina by cultured alveolar epithelial cells. Thus we hypothesized that, in the healthy lung, cell-specific expression of HGF induces a remodeling within septal walls. Electroporation of a plasmid of human HGF gene controlled by the surfactant protein C promoter was applied for targeted gene transfer. Using design-based stereology at light and electron microscopic level, structural alterations were analyzed and compared with a control group. HGF gene transfer increased the volume of distal air spaces, as well as the surface area of the alveolar epithelium. The volume of septal walls, as well as the number of alveoli, was unchanged. Volumes per lung of collagen and elastic fibers were unaltered, but a marked reduction of the volume of residual extracellular matrix (all components other than collagen and elastic fibers) and interstitial cells was found. A correlation between the volumes of residual extracellular matrix and distal air spaces, as well as total surface area of alveolar epithelium, could be established. Cell-specific expression of HGF leads to a remodeling of the connective tissue within the septal walls in the healthy lung, which is associated with more pronounced stretching of distal air spaces at a given hydrostatic pressure during instillation fixation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatiotemporal control of neuronal excitability is fundamental to the inhibitory process. We now have a wealth of information about the active dendritic properties of cortical neurons including axonally generated sodium action potentials as well as local sodium spikelets generated in the dendrites, calcium plateau spikes, and NMDA spikes. All of these events have been shown to be highly modified by the spatiotemporal pattern of nearby inhibitory input which can drastically change the output firing mode of the neuron. This means that particular populations of interneurons embedded in the neocortical microcircuitry can more precisely control pyramidal cell output than has previously been thought. Furthermore, the output of any given neuron tends to feed back onto inhibitory circuits making the resultant network activity further dependent on inhibition. Network activity is therefore ultimately governed by the subcellular microcircuitry of the cortex and it is impossible to ignore the subcompartmentalization of inhibitory influence at the neuronal level in order to understand its effects at the network level. In this article, we summarize the inhibitory circuits that have been shown so far to act on specific dendritic compartments in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This phase I trial was designed to develop a new effective and well-tolerated regimen for patients with aggressive B cell lymphoma not eligible for front-line anthracycline-based chemotherapy or aggressive second-line treatment strategies. The combination of rituximab (375 mg/m(2) on day 1), bendamustine (70 mg/m(2) on days 1 and 2), and lenalidomide was tested with a dose escalation of lenalidomide at three dose levels (10, 15, or 20 mg/day) using a 3 + 3 design. Courses were repeated every 4 weeks. The recommended dose was defined as one level below the dose level identifying ≥2/6 patients with a dose-limiting toxicity (DLT) during the first cycle. Thirteen patients were eligible for analysis. Median age was 77 years. WHO performance status was 0 or 1 in 12 patients. The Charlson Comorbidity Index showed relevant comorbidities in all patients. Two DLTs occurred at the second dose level (15 mg/day) within the first cycle: one patient had prolonged grade 3 neutropenia, and one patient experienced grade 4 cardiac adverse event (myocardial infarction). Additional grade 3 and 4 toxicities were as follows: neutropenia (31 %), thrombocytopenia (23 %), cardiac toxicity (31 %), fatigue (15 %), and rash (15 %). The dose of lenalidomide of 10 mg/day was recommended for a subsequent phase II in combination with rituximab 375 mg/m(2) on day 1 and bendamustine 70 mg/m(2) on days 1 and 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium nitroprusside (SNP) is used clinically as a rapid-acting vasodilator and in experimental models as donor of nitric oxide (NO). High concentrations of NO have been reported to induce cardiotoxic effects including apoptosis by the formation of reactive oxygen species. We have therefore investigated effects of SNP on the myofibrillar cytoskeleton, contractility and cell death in long-term cultured adult rat cardiomyocytes at different time points after treatment. Our results show, that SNP treatment at first results in a gradual increase of cytoskeleton degradation marked by the loss of actin labeling and fragmentation of sarcomeric structure, followed by the appearance of TUNEL-positive nuclei. Already lower doses of SNP decreased contractility of cardiomyocytes paced at 2 Hz without changes of intracellular calcium concentration. Ultrastructural analysis of the cultured cells demonstrated mitochondrial changes and disintegration of sarcomeric alignment. These adverse effects of SNP in cardiomyocytes were reminiscent of anthracycline-induced cardiotoxicity, which also involves a dysregulation of NO with the consequence of myofibrillar degradation and ultimately cell death. An inhibition of the pathways leading to the generation of reactive NO products, or their neutralization, may be of significant therapeutic benefit for both SNP and anthracycline-induced cardiotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TRPV6, a highly calcium-selective member of the transient receptor potential (TRP) channel superfamily, is a major pathway for calcium absorption in the fetal and adult body. It is expressed abundantly in the duodenum, the placenta and exocrine tissues. TRVP6 was postulated to contribute to store-operated calcium channel (SOC) activity in certain cell types such as exocrine cells. In this study, we tested 2-APB, a widely used SOC inhibitor on human TRPV6 (hTRPV6) activity using fluorescence imaging, patch clamp and radioactive tracer techniques in transiently and stably transfected HEK293 cells. We found that the basal calcium and cadmium influx was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells. 2-APB inhibited hTRPV6 activity in both transient and stably transfected cells. This effect was slightly sensitive toward extracellular calcium. The extracellular sodium concentration did not affect the inhibition of hTRPV6 by 2-APB. However, N-methyl-d-glucamine significantly diminished the inhibitory effect of 2-APB presumably through direct interaction with this compound. Furthermore, 2-APB inhibited the activity of TRPV6 orthologs but not human TRPV5. 2-APB may serve as a parental compound for the development of therapeutic strategies specifically targeting the hTRPV6 calcium channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background To evaluate oncological and clinical outcome in patients with renal cell carcinoma (RCC) and tumor thrombus involving inferior vena cava (IVC) treated with nephrectomy and thrombectomy. Methods We identified 50 patients with a median age of 65 years, who underwent radical surgical treatment for RCC and tumor thrombus of the IVC between 1997 and 2010. The charts were reviewed for pathological and surgical parameters, as well as complications and oncological outcome. Results The median follow-up was 26 months. In 21 patients (42%) distant metastases were already present at the time of surgery. All patients underwent radical nephrectomy, thrombectomy and lymph node dissection through a flank (15 patients/30%), thoracoabdominal (14 patients/28%) or midline abdominal approach (21 patients/42%), depending upon surgeon preference and upon the characteristics of tumor and associated thrombus. Extracorporal circulation with cardiopulmonary bypass (CPB) was performed in 10 patients (20%) with supradiaphragmal thrombus of IVC. Cancer-specific survival for the whole cohort at 5 years was 33.1%. Survival for the patients without distant metastasis at 5 years was 50.7%, whereas survival rate in the metastatic group at 5 years was 7.4%. Median survival of patients with metastatic disease was 16.4 months. On multivariate analysis lymph node invasion, distant metastasis and grading were independent prognostic factors. There was no statistically significant influence of level of the tumor thrombus on survival rate. Indeed, patients with supradiaphragmal tumor thrombus (n = 10) even had a better outcome (overall survival at 5 years of 58.33%) than the entire cohort. Conclusions An aggressive surgical approach is the most effective therapeutic option in patients with RCC and any level of tumor thrombus and offers a reasonable longterm survival. Due to good clinical and oncological outcome we prefer the use of CPB with extracorporal circulation in patients with supradiaphragmal tumor thrombus. Cytoreductive surgery appears to be beneficial for patients with metastatic disease, especially when consecutive therapy is performed. Although sample size of our study cohort is limited consistent with some other studies lymph node invasion, distant metastasis and grading seem to have prognostic value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemodynamic effects related to changes in serum ionized calcium (iCa) are difficult to determine during conventional hemodialysis (HD) using a fixed dialysate concentration of calcium. Regional citrate anticoagulation (RCA) allows the study of the effects of predefined iCa changes on arterial stiffness and blood pressure (BP) during a single dialysis session. In a crossover study, 15 patients with end-stage renal disease underwent two HD sessions with RCA. Each session was divided into two study phases in which iCa was titrated either to 0.8-1.0 mm or to 1.1-1.4 mm. The sequence of phases was randomly chosen and alternated for the second session. After reaching a stable iCa level, pulse wave velocity (PWV), arterial BP, and heart rate were measured. iCa levels were modified during sequence 1 (iCa low-high) from a predialysis baseline value of 1.15 ± 0.09 mm, first to 0.92 ± 0.05 mm (time point 1; P < 0.001 vs. baseline) and then to 1.18 ± 0.05 (time point 2; ns). During sequence 2 (iCa high-low), iCa levels were modified from 1.15 ± 0.12 mm first to 1.20 ± 0.05 mm (time point 1; ns vs. baseline) and then to 0.93 ± 0.03 (time point 2; P < 0.001). Assuming a basic linear repeated measures model, PWV was positively related to iCa levels (P < 0.03) independent of systolic or diastolic BP, heart rate, or ultrafiltration rate. PWV is closely related to acute changes in serum iCa levels in HD patients using RCA. RCA provides an interesting opportunity to study the effects of acute iCa changes during one dialysis procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The T-cell-mediated immune response exhibits a crucial function in the control of the intrahepatic proliferation of Echinococcus multilocularis larvae in mice and humans, both being natural intermediate hosts of the parasite. Antigen B (AgB), a metabolized Echinococcus spp. lipoprotein, contributes to the modulation of the T-cell immune response, and distinct sites of the corresponding AgB1, AgB3 and AgB4 genes were shown to be under positive selection pressure. Since several AgB gene variants are present in a single Echinococcus metacestode, we used secondary E. multilocularis infections in BALB/c and in athymic nude mice (devoid of T-cell responses) to analyze the effect of the cellular immune response on the expression and diversity of EmAgB1-EmAgB4 genes. We demonstrated hereby that EmAgB transcripts were less abundant in nude mice during the early phase of infection (at one month post-infection), and that EmAgB2 is simultaneously down-regulated when compared to the other three genes. A negative relationship exists between the level of transcription and diversity of EmAgB genes. Moreover, no excess of non-synonymous substitutions was found among the distinct EmAgB alleles from a single host. Together, these results pointed to the effect of purifying selection, which seemed to eliminate the detrimental AgB variants generated during the development of the metacestode within the peritoneal cavity of its intermediate host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important immunopathological consequence of intraperitoneal alveolar echinococcosis (AE) in the mouse is suppression of T cell-mediated immune responses. We investigated whether and how intraperitoneal macrophages (MØs) are, respectively, implicated as antigen-presenting cells (APCs). In a first step we showed that peritoneal MØs from infected mice (AE-MØs) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells. In a subsequent step, AE-MØs as well as naïve MØs (positive control) proved their ability to uptake and process C-Ova fluorescein isthiocyanate (FITC). Furthermore, in comparison with naïve MØs, the surface expression of Ia molecules was up-regulated on AE-MØs at the early stage of infection, suggesting that AE-MØs provide the first signal via the antigen-Ia complex. To study the accessory activity of MØs, AE-MØs obtained at the early and late stages of infection were found to decrease Con A-induced proliferation of peritoneal naïve T cells as well as of AE-sensitized peritoneal T cells, in contrast to stimulation with naïve MØs. The status of accessory molecules was assessed by analysing the expression level of costimulatory molecules on AE-MØs, with naïve MØs as controls. It was found that B7-1 (CD80) and B7-2 (CD86) expression remained unchanged, whereas CD40 was down-regulated and CD54 (= ICAM-1) was slightly up-regulated. In a leucocyte reaction of AE-MØs with naïve or AE-T cells, both types of T cells increased their proliferative response when CD28 - the ligand of B7 receptors - was exposed to anti-CD28 in cultures. Conversely to naïve MØs, pulsing of AE-MØs with agonistic anti-CD40 did not even partially restore their costimulatory activity and failed to increase naïve or AE-T cell proliferation. Neutralizing anti-B7-1, in combination with anti-B7-2, reduced naïve and AE-T cell proliferation, whereas anti-CD40 treatment of naïve MØs increased their proliferative response to Con A. These results point at the key role of B7 receptors as accessory molecules and the necessity of the integrity of CD40-expression by naïve MØs to improve their accessory activity. Taken together, the obstructed presenting-activity of AE-MØs appeared to trigger an unresponsiveness of T cells, contributing to the suppression of their clonal expansion during the chronic phase of AE-infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) pumps belong to the family of Ca2+-ATPases responsible for the maintenance of calcium in the endoplasmic reticulum. In epidermal keratinocytes, SERCA2-controlled calcium stores are involved in cell cycle exit and onset of terminal differentiation. Hence, their dysfunction was thought to provoke impaired keratinocyte cohesion and hampered terminal differentiation. Here, we assessed cultured keratinocytes and skin biopsies from a canine family with an inherited skin blistering disorder. Cells from lesional and phenotypically normal areas of one of these dogs revealed affected calcium homeostasis due to depleted SERCA2-gated stores. In phenotypically normal patient cells, this defect compromised upregulation of p21(WAF1) and delayed the exit from the cell cycle. Despite this abnormality it failed to impede the terminal differentiation process in the long term but instead coincided with enhanced apoptosis and appearance of chronic wounds, suggestive of secondary mutations. Collectively, these findings provide the first survey on phenotypic consequences of depleted SERCA-gated stores for epidermal homeostasis that explain how depleted SERCA2 calcium stores provoke focal lesions rather than generalized dermatoses, a phenotype highly reminiscent of the human genodermatosis Darier disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of somatic cell count (SCC) and milk fraction on milk composition, distribution of cell populations, and mRNA expression of various inflammatory parameters was studied. Therefore, quarter milk samples were defined as cisternal (C), first 400 g of alveolar (A1), and remaining alveolar milk (A2) during the course of milking. Quarters were assigned to 4 groups according to their total SCC: 1) <12 x 10(3)/mL, 2) 12 to 100 x 10(3)/mL, 3) 100 to 350 x 10(3)/mL, and 4) >350 x 10(3)/mL. Milk constituents of interest were SCC, fat, protein, lactose sodium, and chloride ions as well as electrical conductivity. Cell populations were classified into lymphocytes, macrophages, and neutrophils (PMN). The mRNA expression of the inflammatory factors tumor necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, lactoferrin, and lysozyme was measured via real-time, quantitative reverse transcription PCR. Somatic cell count decreased from highest levels in C to lowest levels in A1 and increased thereafter to A2 in all groups. Fat content increased from C to A2 and with increasing SCC level. Lactose decreased with increasing SCC level but remained unchanged during milking. Concentrations of sodium and chloride, and electrical conductivity increased with increasing SCC but were higher in C than in A1 and A2. Protein was not affected by milk fraction or SCC level. The distribution of leukocytes was dramatically influenced by milk fraction and SCC. Lymphocytes were the dominating cell population in group 1, but the proportion of lymphocytes was low in groups 2, 3, and 4. Macrophage proportion was highest in group 2 and decreased in groups 3 and 4, whereas that of PMN increased from group 2 to 4. The content of macrophages decreased during milking in all SCC groups whereas that of PMN increased. The proportion of lymphocytes was not affected by milk fraction. The mRNA expression of all inflammatory factors showed an increase with increasing SCC but minor changes occurred during milking. In conclusion, milk fraction and SCC level have a crucial influence on the distribution of leukocyte populations and several milk constituents. The surprisingly high content of lymphocytes and concomitantly low mRNA expression of inflammatory factors in quarters with SCC <12 x 10(3)/mL indicates a different and possibly reduced readiness of the immune system to respond to invading pathogens.