992 resultados para bulk glasses
Resumo:
We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness). © 2008 IOP Publishing Ltd.
Resumo:
The seeded infiltration and growth (SIG) technique offers near-net shape processing of bulk superconductors with significant improvement in reduced Y2BaCuO5 (Y-211) inclusion size, reduced shrinkage, reduced porosity and improved current density compared to samples fabricated by top seeded melt growth (TSMG). Y2Ba4CuMOy phases where M=Nb, Mo, W, Ta, etc., have been shown to form nano-scale inclusions in the YBa2Cu3Oy (Y-123) phase matrix and to contribute to enhanced magnetic flux pinning in these materials. In this paper, we describe the introduction of Y2Ba 4CuWOy nano-scale inclusions into bulk superconductors processed by the seeded infiltration growth process. Critical current density, Jc, in excess of 105 A/cm2 at 77 K in self-field is observed for samples containing Y2Ba 4CuWOy. © 2011 IEEE.
Resumo:
High Temperature superconductors are able to carry very high current densities, and thereby sustain very high magnetic fields. There are many projects which use the first property and these have concentrated on power generation, transmission and utilization, however there are relatively few which are currently exploiting the ability to sustain high magnetic fields. There are two main reasons for this: high field wound magnets can and have been made from both BSCCO and YBCO but currently their cost is much higher than the alternative provided by low Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form which can be magnetized to high fields and using flux pumping this can be done in situ. This paper explores some of the applications of bulk superconductors and describes methods of producing field patterns using the highly uniform magnetic fields required for MRI and accelerator magnets as the frame of reference. The patterns are not limited to uniform fields and it is entirely possible to produce a field varying sinusoidally in space such as would be required for a motor or a generator. The scheme described in this paper describes a dipole magnet such as is found in an accelerator magnet. The tunnel is 30 × 50 × 1000 mm and we achieve a uniformity of better than 200 ppm over the 1000 mm length and better than 1 ppm over the central 500 mm region. The paper presents results for both the overall uniformity and the integrated uniformity which is 302 ppm over the 1000 mm length. © 2010 IEEE.
Resumo:
The effect of bulk packaging on the storage of salted and dried fish was studied at ambient conditions. Four different packaging systems were tried, among which gusseted type high density polyethylene woven sacks having either circular loom or traditional loom laminated with 100 gauge low density polyethylene were found to be best suited for dry fish packaging as they could withstand the hazards of handling, transportation and storage.
Resumo:
FBAR devices with carbon nanotube (CNT) electrodes have been developed withthe aim of taking advantage of the low density and high acoustic impedance ofthe CNTs compared to other known materials. The influence of the CNTs on thefrequency response of the FBAR devices was studied by comparing two identicalsets of devices, one set comprised FBARs fabricated with chromium/gold bilayerelectrodes, and the second set comprised FBARs fabricated with CNT electrodes.It was found that the CNTs had a significant effect on attenuating travellingwaves at the surface of the FBARs membranes due to their high elastic stiffness.Finite element analysis of the devices fabricated was carried out using COMSOLMultiphysics, and the numerical results confirmed the experimental resultsobtained. © 2010 IEEE.
Resumo:
Single grain REBa2C3uO7 ((RE)BCO, where RE is a rare earth element or yttrium) bulk superconducting materials have significant potential for a variety of engineering applications due to their ability to trap high magnetic fields. However, it is well known that the presence of grain boundaries coupled with a high angle of misorientation (typically 5�) significantly reduces the critical current density, J c , in all forms of high temperature superconducting materials. It is of considerable fundamental and technological interest, therefore, to investigate the grain boundary properties of bulk, film and tape (RE)BCO. We report a successful multi-seeding technique for the fabrication of fully aligned, artificial (0��misalignment) grain boundaries within large grain YBCO bulk superconductors using bridge-shaped seeds. The microstructure and critical current densities of the grain boundaries produced by this technique have been studied in detail.
Resumo:
This paper shows that film bulk acoustic resonator (FBAR) arrays can be very useful sensors either to detect physical parameters such as temperature and pressure directly or to detect bio-chemicals with extremely high sensitivities by incorporating a chemisorption layer or bio-probe molecules. Furthermore, it also shows that surface acoustic wave devices can be integrated with a FBAR sensor array on the same piezoelectric substrate as the microfluidics systems to perform transportation and mixing of biosamples etc. demonstrating the possibility to fabricate integrated lab-on-a-chip detection systems, in which all the actuators and sensors are operated by acoustic wave devices. This makes the detection system simple, low cost and easy to operate and hence has great commercial potential. © 2011 Inderscience Enterprises Ltd.
Resumo:
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics.