922 resultados para blood vessel wall


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, d-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using 4-(14) C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of partial heating/cooling of the wall on the mixed convection with thermal radiation in incompressible laminar pipe flow has been investigated. The gas is assumed to be gray, emitting and absorbing with constant thermophysical properties except the density variation in the buoyancy term. The partial heating/cooling of the wall has significant effect on the Nusselt number. The radiation parameter increases the heat transfer, but reduces the effect of buoyancy. The heat transfer also increases with the optical thickness until a certain value, beyond which it decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In well dispersed multi-wall carbon nanotube-polystyrene composite of 15 wt%, with room temperature conductivity of similar to 5 S/cm and resistivity ratio R-2K/R-200K] of similar to 1.4, the temperature dependence of conductivity follows a power-law behavior. The conductivity increases with magnetic field for a wide range of temperature (2-200 K), and power-law fits to conductivity data show that localization length (xi) increases with magnetic field, resulting in a large negative magnetoresistance (MR). At 50T, the negative MR at 8 K is similar to 13% and it shows a maximum at 90K (similar to 25%). This unusually large negative MR indicates that the field is delocalizing the charge carriers even at higher temperatures, apart from the smaller weak localization contribution at T < 20 K. This field-induced delocalization mechanism of MR can provide insight into the intra and inter tube transport. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled motion of artificial nanomotors in biological environments, such as blood, can lead to fascinating biomedical applications, ranging from targeted drug delivery to microsurgery and many more. In spite of the various strategies used in fabricating and actuating nanomotors, practical issues related to fuel requirement, corrosion, and liquid viscosity have limited the motion of nanomotors to model systems such as water, serum, or biofluids diluted with toxic chemical fuels, such as hydrogen peroxide. As we demonstrate here, integrating conformal ferrite coatings with magnetic nanohelices offer a promising combination of functionalities for having controlled motion in practical biological fluids, such as chemical stability, cytocompatibility, and the generated thrust. These coatings were found to be stable in various biofluids, including human blood, even after overnight incubation, and did not have significant influence on the propulsion efficiency of the magnetically driven nanohelices, thereby facilitating the first successful ``voyage'' of artificial nanomotors in human blood. The motion of the ``nanovoyager'' was found to show interesting stick-slip dynamics, an effect originating in the colloidal jamming of blood cells in the plasma. The system of magnetic ``nanovoyagers'' was found to be cytocompatible with C2C12 mouse myoblast cells, as confirmed using MTT assay and fluorescence microscopy observations of cell morphology. Taken together, the results presented in this work establish the suitability of the ``nanovoyager'' with conformal ferrite coatings toward biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies of Staphylococcus aureus have shown a relation between certain clones and the presence of specific virulence genes, but how this translates into virulence-associated functional responses is not fully elucidated. Here we addressed this issue by analyses of community-acquired S. aureus strains characterized with respect to antibiotic resistance, ST types, agr types, and virulence gene profiles. Supernatants containing exotoxins were prepared from overnight bacterial cultures, and tested in proliferation assays using human peripheral blood mononuclear cells (PBMC). The strains displayed stable phenotypic response profiles, defined by either a proliferative or cytotoxic response. Although, virtually all strains elicited superantigen-mediated proliferative responses, the strains with a cytotoxic profile induced proliferation only in cultures with the most diluted supernatants. This indicated that the superantigen-response was masked by a cytotoxic effect which was also confirmed by flow cytometry analysis. The cytotoxic supernatants contained significantly higher levels of alpha-toxin than did the proliferative supernatants. Addition of alpha-toxin to supernatants characterized as proliferative switched the response into cytotoxic profiles. In contrast, no effect of Panton Valentine Leukocidin, delta-toxin or phenol soluble modulin alpha-3 was noted in the proliferative assay. Furthermore, a significant association between agr type and phenotypic profile was found, where agrII and agrIII strains had predominantly a proliferative profile whereas agrI and IV strains had a predominantly cytotoxic profile. The differential response profiles associated with specific S. aureus strains with varying toxin production could possibly have an impact on disease manifestations, and as such may reflect specific pathotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, micro-shock wave responsive spermidine and dextran sulfate microparticle was developed. Almost 90% of the drug release was observed when the particles were exposed to micro-shock waves 5 times. Micro-shock waves served two purposes; of releasing the antibiotic from the system and perhaps disrupting the S. aureus biofilm in the skin infection model. A combination of shock waves with ciprofloxacin loaded microparticles could completely cure the S. aureus infection lesion in a diabetic mouse model. As a proof of concept insulin release was triggered using micro-shock waves in diabetic mice to reduce the blood glucose level. Insulin release could be triggered for at least 3 days by exposing subcutaneously injected insulin loaded particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natrix clerki Wall, 1925, previously known from its sole holotype and considered a synonym of Amphiesma parallelum (Boulenger, 1890), is resurrected in the genus Amphiesma on the basis of the analysis of morphological variation in 28 specimens of ``Amphiesma parallelum'' auctorum, plus six living, unvouchered specimens discovered in Arunachal Pradesh and Nagaland, India, and one vouchered specimen from Talle Valley in Arunachal Pradesh. Specimens from northeast India (Nagaland), northern Myanmar, and China (Yunnan), previously identified as Amphiesma parallelum either in the literature or in museum's catalogues, are also here referred to A. clerki. The holotype of Amphiesma clerki is redescribed. As a consequence, the definition of Amphiesma parallelum is modified. A. parallelum inhabits the Khasi Hills and Naga Hills in Northeast India, whereas A. clerki has a wider range in the Eastern Himalayas, northern Myanmar and Yunnan (China). Amphiesma clerki differs from A. parallelum by its longer tail, dorsal scales more strongly keeled, scales of the first dorsal scale row strongly keeled vs. smooth, a postocular streak not interrupted at the level of the neck, and a much more vivid pattern on a darker background colour. Characters of species of the Amphiesma parallelum group, i.e. A. clerki, A. parallelum, A. bitaeniatum, A. platyceps and A. sieboldii are compared. A key to this group is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient. (c) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a binary liquid is confined by a strongly repulsive wall, the local density is depleted near the wall and an interface similar to that between the liquid and its vapor is formed. This analogy suggests that the composition of the binary liquid near this interface should exhibit spatial modulation similar to that near a liquid-vapor interface even if the interactions of the wall with the two components of the liquid are the same. The Guggenheim adsorption relation quantifies the concentrations of two components of a binary mixture near a liquid-vapor interface and qualitatively states that the majority (minority) component enriches the interface for negative (positive) mixing energy if the surface tensions of the two components are not very different. From molecular dynamics simulations of binary mixtures with different compositions and interactions we find that the Guggenheim relation is qualitatively satisfied at wall-induced interfaces for systems with negative mixing energy at all state points considered. For systems with positive mixing energy, this relation is found to be qualitatively valid at low densities, while it is violated at state points with high density where correlations in the liquid are strong. This observation is validated by a calculation of the density profiles of the two components of the mixture using density functional theory with the Ramakrishnan-Yussouff free-energy functional. Possible reasons for the violation of the Guggenheim relation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The room-temperature synthesis of mono-dispersed gold nanoparticles, by the reduction of chlorauric acid (HAuCl4) with tannic acid as the reducing and stabilizing agent, is carried out in a microchannel. The microchannel is fabricated with one soft wall, so that there is a spontaneous transition to turbulence, and thereby enhanced mixing, when the flow Reynolds number increases beyond a critical value. The objective of the study is to examine whether the nanoparticle size and polydispersity can be modified by enhancing the mixing in the microchannel device. The flow rates are varied in order to study nanoparticle formation both in laminar flow and in the chaotic flow after transition, and the molar ratio of the chlorauric acid to tannic acid is also varied to study the effect of molar ratio on nanoparticle size. The formation of gold nanoparticles is examined by UV-visual spectroscopy and the size distribution is determined using scanning electron microscopy. The synthesized nanoparticles size decreases from a parts per thousand yen6 nm to a parts per thousand currency sign4 nm when the molar ratio of chlorauric acid to tannic acid is increased from 1 to 20. It is found that there is no systematic variation of nanoparticle size with flow velocity, and the nanoparticle size is not altered when the flow changes from laminar to turbulent. However, the standard deviation of the size distribution decreases by about 30% after transition, indicating that the enhanced mixing results in uniformity of particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular mechanics based finite element analysis is adopted in the current work to evaluate the mechanical properties of Zigzag, Armchair and Chiral Single wall Carbon Nanotubes (SWCNT) of different diameters and chiralities. Three different types of atomic bonds, that is Carbon Carbon covalent bond and two types of Carbon Carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness's are assigned to spring elements in the finite element model of the CNT. The geometry of CNT is built using a macro that is developed for the finite element analysis software. The finite element model of the CNT is constructed, appropriate boundary conditions are applied and the behavior of mechanical properties of CNT is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In `Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. H-1 NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T-2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.