915 resultados para bleaching of TiO2
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated the effects of electrolytic treatment using Dimensionally Stable Anode (DSA, 70%TiO2/30%RuO2) type electrodes in simulated wastewater containing aromatic amine n-phenyl-n'-1,3-dimethylbutyl-p-phenylenediamine (Flexzone 7P). A low direct current density of 0.025 A cm(-2) was applied for periods up to 60 minutes and a 52.6% decrease in Flexzone 7P concentration was observed. Ultraviolet-visible spectra, gas chromatography, toxicity and biodegradation tests were carried out with the aim of verifying the toxic by-products that were formed. Ultraviolet-visible spectra of simulated wastewater exhibited changes in the aromatic amine's molecular structure. Additionally, based on the S. cerevisiae toxicity test, it was observed that detoxification of the wastewater occurred after 15 minutes of electrolysis. It was also observed that five minutes of treatment were sufficient to improve the biodegradation rate, determined through the respirometric Bartha method.
Resumo:
Abiotic factors, such as variations on salinity, exert influence on the animal distribution in the intertidal zone, including zoanthids. This study evaluated the osmotic, morphological and ethological effects of salinity variations on tropical zoanthid Zoanthus sociatus. In order to analyze the hypothesis of osmotic conformation, the zoanthid was submitted to salinity stress. To estimate the osmotic capabilities of the species studied, specimens collected in beach rocks were taken alive to the laboratory and maintained in water collected from the site. The osmoregulatory ability of Z. sociatus was determined by measuring the hemolymph osmolality under various salinity conditions and comparing it to the medium osmolality. Zoanthid Z. sociatus is able to present osmotic conformation in hemolymph salinity in a wide range of external salinity values. The bleaching frequency was high in low salinities and the mortality rate was high after two days of experiment. This experiment shows for the first time the importance of osmotic conformation in a tropical zoanthid and discusses the role of low salinity as a limiting factor for survival and distribution of these important animals in tropical coastal reefs.
Resumo:
Background: Several studies have shown a reduction in enamel bond strengths when the bonding procedure is carried out immediately after vital bleaching with peroxides. This reduction in bond strengths has become a concern in cosmetic dentistry with the introduction of new in-office and waiting-room bleaching techniques. The aim of this in vitro study was to evaluate the effect of three bleaching regimens: 35% hydrogen peroxide (HP), 35% carbamide peroxide (CP), and 10% CP, on dentin bond strengths. Materials and Methods: One hundred and twenty fresh bovine incisors were used in this study. The labial surface of each tooth was ground flat to expose dentin and was subsequently polished with 600-grit wet silicon carbide paper. The remaining dentin thickness was monitored and kept at an average of 2 mm. The teeth were randomly assigned to four bleaching regimens (n = 30): (A) control, no bleaching treatment; (B) 35% HP for 30 minutes; (C) 35% CP for 30 minutes; and (D) 10% CP for 6 hours. For each group, half of the specimens (n = 15) were bonded with Single Bond/Z100 immediately after the bleaching treatment, whereas the other half was bonded after the specimens were stored for 1 week in artificial saliva at 37°C. The specimens were fractured in shear using an Instron machine. Results: For the groups bonded immediately after bleaching, one-way analysis of variance (ANOVA) followed by the Duncan's post hoc test revealed a statistically significant reduction in bond strengths in a range from 71% to 76%. For the groups bonded at 1 week, one-way ANOVA showed that group B (35% HP for 30 min) resulted in the highest bond strengths, whereas 10% CP resulted in the lowest bond strengths. Student's t-test showed that delayed bonding resulted in a significant increase in bond strengths for groups B (35% HP) and C (35% CP); whereas the group bleached with 10% CP (group D) remained in the same range obtained for immediate bonding. Storage in artificial saliva also affected the control group, reducing its bond strengths to 53% of the original. ©2000 BC Decker Inc.
Resumo:
The alkalophilic Bacillus circulans D1 was isolated from decayed wood. It produced high levels of extracellular cellulase-free xylanase. The enzyme was thermally stable up to 60°C, with an optimal hydrolysis temperature of 70°C. It was stable over a wide pH range (5.5-10.5), with an optimum pH at 5.5 and 80% of its activity at pH 9.0. This cellulase-free xylanase preparation was used to biobleach kraft pulp. Enzymatic treatment of kraft pulp decreased chlorine dioxide use by 23 and 37% to obtain the same kappa number (κ number) and brightness, respectively. Separation on Sephadex G-50 isolated three fractions with xylanase activity with distinct molecular weights.
Resumo:
The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.
Resumo:
Degradation of reactive dye Remazol Brilliant Orange 3R (RBO) has been performed using photoeletrocatalysis. A biased potential is applied across a titanium dioxide thin-film photoelectrode illuminated by UV light. It is suggested that charges photogenerated at the electrode surface give rise to chlorine generation and powerful oxidants (OH) that causes the dye solution to decolorize. Rate constants calculated from color decay versus time reveal a first-order reaction up to 5.0×10-5 mol l-1 in dye concentration. The best experimental conditions were found to be pH 6.0 and 1.0 mol l-1 NaCl when the photoelectrode was biased at +1V (versus SCE). Almost complete mineralization of the dye content (70% TOC reduction) was achieved in a 3-h period using these conditions. Effects of other electrolytes, dye concentration and applied potentials also have been investigated and are discussed. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A flow-injection system with a glassy carbon disk electrode modified with Prussian Blue film is proposed for the determination of persulfate in commercial samples of hair bleaching boosters by amperometry. The detection was obtained by chronoamperometric technique and the sample is injected into the electrochemical cell in a wall jet configuration. Potassium chloride at concentration of 0.1 mol L-1 acted as sample carrier at a flow rate of 4.0 mL min-1 and supporting-electrolyte. For 0.025 V (vs. Ag/AgCl) applied voltage, the proposed system handles ca. 160 samples per hour (1.0 10-4 - 1.0 10-3 mol L-1 of persulfate), consuming about 200 μL sample and 11 mg KCl per determination. Typical linear correlations between electrocatalytic current and persulfate concentration was ca. 0.9998. The detection limit is 9.0 10-5 mol L-1 and the calculated amperometric sensibility 3.6 103 μA L mol -1. Relative standard deviation (n =12) of a 1.0 10-4 mol L-1 sample is about 2.2%. The method was applied to persulfate determination in commercial hair-bleaching samples and results are in agreement with those obtained by titrimetry at 95% confidence level and good recoveries (95 - 112%) of spiked samples were found. © 2003 by MDPI.
Resumo:
In this study, the photoelectrocatalytic behavior of bromide and generation of bromine using TiO2 was investigated in the separate anode and cathode reaction chambers. Our results show that the generation of bromine begins around a flatband potential of -0.34 V vs. standard calomel electrode (SCE) at pH 3.0 under UV illumination and increases with an increase in positive potential, finally reaching a steady-state concentration at 1.0 V vs. SCE. Maximum bromine formation occurs over the range of pH 4-6, decreasing sharply at conditions where the pH > 7. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Dental bleaching represents an effective, conservative, and relatively low-cost method for improving the appearance of discolored pulpless teeth. Among the bleaching techniques, the walking bleach technique with sodium perborate associated with water or hydrogen peroxide stands out because of its esthetic results and safety. A modified walking bleach technique with the use of 37% carbamide peroxide as the bleaching agent is presented. Additionally, the adverse effects of dental bleaching in the following restorative procedures are discussed, showing the advantages with the use of 37% carbamide peroxide.
Resumo:
The production of chlorine and hypochlorite is of great economical and technological interest due to their large-scale use in many kinds of commercial applications. Yet, the current processes are not without problems such as inevitable side reactions and the high cost of production. This work reports the photoelectrocatalytic oxidation of chloride ions to free chlorine as it has been investigated by using titanium dioxide (TiO2) and several metal-doped titanium dioxide (M-TiO2) material electrodes. An average concentration of 800 mg L-1 of free chlorine was obtained in an open-air reactor using a TiO2 thin-film electrode biased at +1.0 V (SCE) and illuminated by UV light. The M-doped electrodes have performed poorly compared with the pure TiO2 counterpart. Test solutions containing 0.05 mol L-1 NaCl pH 2.0-4.0 were found to be the best conditions for fast production of free chlorine. A complete investigation of all parameters that influence the global process of chlorine production by the photoelectrocatalytic method such as applied potential, concentration of NaCl, pH solution, and time is presented in detail. In addition, photocurrent vs potential curves and the reaction order are also discussed.
Resumo:
A new biflavonol, named chimarrhoside (1), and eight known flavonol glycosides (2-9), were isolated from the leaves of Chimarrhis turbinata. Their structures were established on the basis of 1D and 2D NMR experiments as quercetin-3-O-rutinoside (2), kaempferol-3-O-rutinoside (3), kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside (4), quercetin-3-O-α-L-rhamnopyranosyl-(1→6)-β-D- galactopyranoside (5), 6-hydroxy-rutin (6), kaempferol-3-O-D-galactopyranoside (7), kaempferol-3-O-D-glucopyranoside (8) and kaempferol-3-O-α- Lrhamnopyranosyl-(1→6)-α-L-rhamnopyranosyl-(1→4) -β-D-glucopyranoside (9). In addition, catechin (10) and catechin-(4α→8)-catechin-procyanidin B-3) (11) were isolated. The crude extract, fractions and isolated compounds were evaluated for their antioxidative properties using an autographic assay based on β-carotene bleaching on TLC plates, and spectrophotometric detection by reduction of the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. Flavonoids 2, 5, 6, 10 and 11 displayed strong free radical scavenging activity, when compared with the standards BHT and rutin. ©2005 Sociedade Brasileira de Química.
Resumo:
Titanium dioxide (rutile) has a lot of interesting and useful features and hence is widely utilized for application. It has been used as white pigment, photocatalyst, biocompatible material and semiconductor material used in solar battery. In semiconducting TiO2 oxygen vacancies are said to play an important role in the electrical conduction. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occur in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in TiO2 samples using a torsion pendulum operating in frequencies around 40Hz, in the temperature range between -173°C to 330°C with heating rate of 1°C/min. The results shown a reduction in the elasticity modulus with the increase in the corn starch content used for this consolidation.
Resumo:
This paper describes results of the photo-degradation of three types of soluble and emulsive cutting fluids in an aqueous medium, using TiO2 as catalyst in suspension and UV radiation. The TiO2 proved to be an effective catalyst for the degradation of the cutting fluids investigated. The degradation rate depends on pH and nature of the fluids. The best performance of catalyst was observed at pH 8.0 for all the fluids when most of 70% of the organic load was decomposed. ©2006 Sociedade Brasileira de Química.