961 resultados para bile-duct ligation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Policosanol is a mixture of higher aliphatic primary alcohols isolated from sugar cane wax, whose main component is octacosanol. An inhibitory effect of policosanol on platelet aggregation and cerebral ischemia in animal models has been reported. Thus, the objective of the present study was to evaluate the effect of policosanol on cerebral ischemia induced by unilateral carotid ligation and bilateral clamping and recirculation in Mongolian gerbils. Policosanol (200 mg/kg) administered immediately after unilateral carotid ligation and at 12- or 24-h intervals for 48 h significantly inhibited mortality and clinical symptoms when compared with controls, whereas lower doses (100 mg/kg) were not effective. Control animals showed swelling (tissue vacuolization) and necrosis of neurons in all areas of the brain studied (frontal cortex, hippocampus, striatum and olfactory tubercle), showing a similar injury profile. In the group treated with 200 mg/kg policosanol swelling and necrosis were significantly reduced when compared with the control group. In another experimental model, comparison between groups showed that the brain water content of control gerbils (N = 15) was significantly higher after 15 min of clamping and 4 h of recirculation than in sham-operated animals (N = 13), whereas policosanol (200 mg/kg) (N = 19) significantly reduced the edema compared with the control group, with a cerebral water content identical to that of the sham-operated animals. cAMP levels in the brain of control-ligated Mongolian gerbils (N = 8) were significantly lower than those of sham-operated animals (N = 10). The policosanol-treated group (N = 10) showed significantly higher cAMP levels (2.68 pmol/g of tissue) than the positive control (1.91 pmol/g of tissue) and similar to those of non-ligated gerbils (2.97 pmol/g of tissue). In conclusion, our results show an anti-ischemic effect of policosanol administered after induction of cerebral ischemia, in two different experimental models in Mongolian gerbils, suggesting a possible therapeutic effect in cerebral vascular disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat transfer effectiveness in nuclear rod bundles is of great importance to nuclear reactor safety and economics. An important design parameter is the Critical Heat Flux (CHF), which limits the transferred heat from the fuel to the coolant. The CHF is determined by flow behaviour, especially the turbulence created inside the fuel rod bundle. Adiabatic experiments can be used to characterize the flow behaviour separately from the heat transfer phenomena in diabatic flow. To enhance the turbulence, mixing vanes are attached to spacer grids, which hold the rods in place. The vanes either make the flow swirl around a single sub-channel or induce cross-mixing between adjacent sub-channels. In adiabatic two-phase conditions an important phenomenon that can be investigated is the effect of the spacer on canceling the lift force, which collects the small bubbles to the rod surfaces leading to decreased CHF in diabatic conditions and thus limits the reactor power. Computational Fluid Dynamics (CFD) can be used to simulate the flow numerically and to test how different spacer configurations affect the flow. Experimental data is needed to validate and verify the used CFD models. Especially the modeling of turbulence is challenging even for single-phase flow inside the complex sub-channel geometry. In two-phase flow other factors such as bubble dynamics further complicate the modeling. To investigate the spacer grid effect on two-phase flow, and to provide further experimental data for CFD validation, a series of experiments was run on an adiabatic sub-channel flow loop using a duct-type spacer grid with different configurations. Utilizing the wire-mesh sensor technology, the facility gives high resolution experimental data in both time and space. The experimental results indicate that the duct-type spacer grid is less effective in canceling the lift force effect than the egg-crate type spacer tested earlier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the role of oxidized lipoproteins is well known in atherogenesis, the role of vitamin E supplementation is still controversial. There is also little information about cholesterol metabolism (hepatic concentration and fecal excretion) in the new models of atherosclerosis. In the present study, we evaluated the effect of moderate vitamin E supplementation on cholesterol metabolism and atherogenesis in apolipoprotein E (apo E)-deficient mice. Apo E-deficient mice were fed an atherogenic diet containing 40 or 400 mg/kg of alpha-tocopherol acetate for 6 weeks. Total cholesterol in serum and liver and 3-OH-alpha-sterols in feces, and fecal excretion of bile acids were determined and histological analyses of aortic lesion were performed. A vitamin E-rich diet did not affect body weight, food intake or serum cholesterol. Serum and hepatic concentrations of cholesterol as well as sterol concentration in feces were similar in both groups. However, when compared to controls, the alpha-tocopherol-treated mice showed a reduction of about 60% in the atherosclerotic lesions when both the sum of lesion areas and the average of the largest lesion area were considered. These results demonstrate that supplementation of moderate doses of alpha-tocopherol was able to slow atherogenesis in apo E-deficient mice and to reduce atherogenic lipoproteins without modifying the hepatic pool or fecal excretion of cholesterol and bile acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) on post-ischemic function in isolated hearts from adult male Wistar rats perfused according to the Langendorff technique. Local ischemia was induced by coronary ligation for 15 min. After ischemia, hearts were reperfused for 30 min. Addition of angiotensin II (Ang II) (0.20 nM, N = 10) or Ang-(1-7) (0.22 nM, N = 10) to the Krebs-Ringer perfusion solution (KRS) before the occlusion did not modify diastolic or systolic tension, heart rate or coronary flow (basal values for Ang-(1-7)-treated hearts: 0.72 ± 0.08 g, 10.50 ± 0.66 g, 216 ± 9 bpm, 5.78 ± 0.60 ml/min, respectively). During the period of occlusion, the coronary flow, heart rate and systolic tension decreased (values for Ang-(1-7)-treated hearts: 2.83 ± 0.24 ml/min, 186 ± 7 bpm, 6.95 ± 0.45 g, respectively). During reperfusion a further decrease in systolic tension was observed in control (4.95 ± 0.60 g) and Ang II-treated hearts (4.35 ± 0.62 g). However, in isolated hearts perfused with KRS containing Ang-(1-7) the further reduction of systolic tension during the reperfusion period was prevented (7.37 ± 0.68 g). The effect of Ang-(1-7) on the systolic tension was blocked by the selective Ang-(1-7) antagonist A-779 (2 nM, N = 9), by the bradykinin B2 antagonist HOE 140 (100 nM, N = 10), and by indomethacin pretreatment (5 mg/kg, ip, N = 8). Pretreatment with L-NAME (30 mg/kg, ip, N = 8) did not change the effect of Ang-(1-7) on systolic tension (6.85 ± 0.61 g). These results show that Ang-(1-7) at low concentration (0.22 nM) improves myocardial function (systolic tension) in ischemia/reperfusion through a receptor-mediated mechanism involving release of bradykinin and prostaglandins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythrocytes are useful in evaluating K+ transport pathways involved in internal K+ balance. Several forms of H+,K+-ATPase have been described in nephron segments active in K+ transport. Furthermore, the activity of a ouabain-insensitive isoform of H+,K+-ATPase expressed in collecting duct cells may be modulated by acid-base status. Various assays were performed to determine if a ouabain-insensitive K+-ATPase is present in rat erythrocytes and, if so, whether it plays a role in internal K+ balance. Kinetic studies demonstrated that maximal stimulation of enzyme activity was achieved with 2.5 mM K+ at pH 7.4. Subsequent experiments were performed on erythrocyte membranes collected from animals submitted to varying degrees of K+ homeostasis: control rats, K+-depleted rats, K+-loaded rats, and rats rendered hyperkalemic due to acute renal failure. As observed in the collecting duct cell studies, there was a significant decrease in the activity of ouabain-insensitive K+-ATPase in the erythrocytes of both K+-loaded and metabolically alkalotic K+-depleted rats. However, this enzyme activity in erythrocyte membranes of rats with metabolic acidosis-related hyperkalemia was similar to that of control animals. This finding may be interpreted as resulting from two potentially modulating factors: the stimulating effect that metabolic acidosis has on K+-ATPase and the counteracting effect that hyperkalemia and uremia have on metabolic acidosis. In summary, we present evidence of a ouabain-insensitive K+-ATPase in erythrocytes, whose activity is modulated by acid-base status and K+ levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study focused on the role of sympathetic renal nerve activity, in mediating congestive heart failure-induced sodium retention following experimental chronic myocardial infarction. Groups of male Wistar rats (240-260 g) were studied: sham-operated coronary ligation (CON3W, N = 11), coronary ligation and sham-operated renal denervation (INF3W, N = 19), 3 weeks of coronary ligation and sympathetic renal nerve denervation (INF3WDX, N = 6), sham-operated coronary ligation (N = 7), and 16 weeks of coronary ligation (INF16W, N = 7). An acute experimental protocol was used in which the volume overload (VO; 5% of body weight) was applied for 30 min after the equilibration period of continuous iv infusion of saline. Compared to control levels, VO produced an increase (P < 0.01, ANOVA) in urine flow rate (UFR; 570%) and urinary sodium excretion (USE; 1117%) in CON3W. VO induced a smaller increase (P < 0.01) in USE (684%) in INF3W. A similar response was also observed in INF16W. In INF3WDX, VO produced an immediate and large increase (P < 0.01) in UFR (547%) and USE (1211%). Similarly, in INF3W VO increased (P < 0.01) UFR (394%) and USE (894%). Compared with INF3W, VO induced a higher (P < 0.01) USE in INF3WDX, whose values were similar to those for CON3W. These results suggest that renal sympathetic activity may be involved in sodium retention induced by congestive heart failure. This premise is supported by the observation that in bilaterally renal denervated INF3WDX rats myocardial infarction was unable to reduce volume expansion-induced natriuresis. However, the mechanism involved in urinary volume regulation seems to be insensitive to the factors that alter natriuresis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The histone-like protein H1 (H-NS) is an abundant structural component of the bacterial nucleoid and influences many cellular processes including recombination, transcription and transposition. Mutations in the hns gene encoding H-NS are highly pleiotropic, affecting the expression of many unrelated genes. We have studied the role of H-NS on the regulation of hemolysin gene expression in Serratia marcescens. The Escherichia coli hns mutant carrying S. marcescens hemolysin genes on a plasmid constructed by ligation of the 3.2-kb HindIII-SacI fragment of pR02 into pBluescriptIIKS, showed a high level of expression of this hemolytic factor. To determine the osmoregulation of wild-type and hns defective mutants the cells were grown to mid-logarithmic phase in LB medium with 0.06 or 0.3 M NaCl containing ampicillin and kanamycin, whereas to analyze the effect of pH on hemolysin expression, the cells were grown to late-logarithmic phase in LB medium buffered with 0.1 M Tris-HCl, pH 4.5 to 8.0. To assay growth phase-related hemolysin production, bacterial cells were grown in LB medium supplemented with ampicillin and kanamycin. The expression of S. marcescens hemolysin genes in wild-type E. coli and in an hns-defective derivative at different pH and during different growth phases indicated that, in the absence of H-NS, the expression of hemolysin did not vary with pH changes or growth phases. Furthermore, the data suggest that H-NS may play an important role in the regulation of hemolysin expression in S. marcescens and its effect may be due to changes in DNA topology influencing transcription and thus the amount of hemolysin expression. Implications for the mechanism by which H-NS influences gene expression are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between H+ extrusion via H+-ATPase and Cl- conductance was studied in the C11 clone of MDCK cells, akin to the intercalated cells of the collecting duct. Cell pH (pHi) was measured by fluorescence microscopy using the fluorescein-derived probe BCECF-AM. Control recovery rate measured after a 20 mM NH4Cl acid pulse was 0.136 ± 0.008 pH units/min (dpHi/dt) in Na+ Ringer and 0.032 ± 0.003 in the absence of Na+ (0 Na+). With 0 Na+ plus the Cl- channel inhibitor NPPB (10 µM), recovery was reduced to 0.014 ± 0.001 dpHi/dt. 8-Br-cAMP, known to activate CFTR Cl- channels, increased dpHi/dt in 0 Na+ to 0.061 ± 0.009 and also in the presence of 46 nM concanamycin and 50 µM Schering 28080. Since it is thought that the Cl- dependence of H+-ATPase might be due to its electrogenic nature and the establishment of a +PD (potential difference) across the cell membrane, the effect of 10 µM valinomycin at high (100 mM) K+ was tested in our cells. In Na+ Ringer, dpHi/dt was increased, but no effect was detected in 0 Na+ Ringer in the presence of NPPB, indicating that in intact C11 cells the effect of blocking Cl- channels on dpHi/dt was not due to an adverse electrical gradient. The effect of 100 µM ATP was studied in 0 Na+ Ringer solution; this treatment caused a significant inhibition of dpHi/dt, reversed by 50 µM Bapta. We have shown that H+-ATPase present in MDCK C11 cells depends on Cl- ions and their channels, being regulated by cAMP and ATP, but not by the electrical gradient established by electrogenic H+ transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myocardial infarction leads to compensatory ventricular remodeling. Disturbances in myocardial contractility depend on the active transport of Ca2+ and Na+, which are regulated by Na+-K+ ATPase. Inappropriate regulation of Na+-K+ ATPase activity leads to excessive loss of K+ and gain of Na+ by the cell. We determined the participation of Na+-K+ ATPase in ventricular performance early and late after myocardial infarction. Wistar rats (8-10 per group) underwent left coronary artery ligation (infarcted, Inf) or sham-operation (Sham). Ventricular performance was measured at 3 and 30 days after surgery using the Langendorff technique. Left ventricular systolic pressure was obtained under different ventricular diastolic pressures and increased extracellular Ca2+ concentrations (Ca2+e) and after low and high ouabain concentrations. The baseline coronary perfusion pressure increased 3 days after myocardial infarction and normalized by 30 days (Sham 3 = 88 ± 6; Inf 3 = 130 ± 9; Inf 30 = 92 ± 7 mmHg; P < 0.05). The inotropic response to Ca2+e and ouabain was reduced at 3 and 30 days after myocardial infarction (Ca2+ = 1.25 mM; Sham 3 = 70 ± 3; Inf 3 = 45 ± 2; Inf 30 = 29 ± 3 mmHg; P < 0.05), while the Frank-Starling mechanism was preserved. At 3 and 30 days after myocardial infarction, ventricular Na+-K+ ATPase activity and contractility were reduced. This Na+-K+ ATPase hypoactivity may modify the Na+, K+ and Ca2+ transport across the sarcolemma resulting in ventricular dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(8,172) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(2,44) = 7.6884, P < 0.001), 3rd (F(2,44) = 21.481, P < 0.00001) and 4th trials (F(2,44) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selectins play an essential role in most inflammatory reactions, mediating the initial leukocyte-rolling event on activated endothelium. Heparin and dermatan sulfate (DS) bind and block P- and L-selectin function in vitro. Recently, we reported that subcutaneous administration of DS inhibits colon inflammation in rats by reducing macrophage and T-cell recruitment and macrophage activation. In the present study, we examined the effect of porcine intestinal mucosa DS on renal inflammation and fibrosis in mice after unilateral ureteral obstruction (UUO). Twenty-four adult male Swiss mice weighing 20-25 g were divided into 4 groups: group C (N = 6) was not subjected to any surgical manipulation; group SH (N = 6) was subjected to surgical manipulation but without ureter ligation; group UUO (N = 6) was subjected to unilateral ureteral obstruction and received no treatment; group UUO plus DS (N = 6) was subjected to UUO and received DS (4 mg/kg) subcutaneously daily for 14 days. An immunoblot study was also performed for TGF-β. Collagen (stained area ~3700 µm²), MCP-1 (stained area ~1700 µm²), TGF-β (stained area ~13% of total area), macrophage (number of cells ~40), and myofibroblast (stained area ~1900 µm²) levels were significantly (P < 0.05) higher in the UUO group compared to control. DS treatment significantly (P < 0.05) reduced the content of collagen (stained area ~700 µm²), MCP-1 (stained area ~160 µm²) and TGF-β (stained area ~5% of total area), in addition to myofibroblast (stained area ~190 µm²) and macrophage (number of cells ~32) accumulation in the obstructed kidney. Overall, these results indicate that DS attenuates kidney inflammation by reducing macrophage recruitment, myofibroblast population and fibrosis in mice submitted to UUO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficacy of endothelin receptor antagonists in protecting against myocardial ischemia/reperfusion (I/R) injury is controversial, and the mechanisms remain unclear. The aim of this study was to investigate the effects of CPU0123, a novel endothelin type A and type B receptor antagonist, on myocardial I/R injury and to explore the mechanisms involved. Male Sprague-Dawley rats weighing 200-250 g were randomized to three groups (6-7 per group): group 1, Sham; group 2, I/R + vehicle. Rats were subjected to in vivo myocardial I/R injury by ligation of the left anterior descending coronary artery and 0.5% sodium carboxymethyl cellulose (1 mL/kg) was injected intraperitoneally immediately prior to coronary occlusion. Group 3, I/R + CPU0213. Rats were subjected to identical surgical procedures and CPU0213 (30 mg/kg) was injected intraperitoneally immediately prior to coronary occlusion. Infarct size, cardiac function and biochemical changes were measured. CPU0213 pretreatment reduced infarct size as a percentage of the ischemic area by 44.5% (I/R + vehicle: 61.3 ± 3.2 vs I/R + CPU0213: 34.0 ± 5.5%, P < 0.05) and improved ejection fraction by 17.2% (I/R + vehicle: 58.4 ± 2.8 vs I/R + CPU0213: 68.5 ± 2.2%, P < 0.05) compared to vehicle-treated animals. This protection was associated with inhibition of myocardial inflammation and oxidative stress. Moreover, reduction in Akt (protein kinase B) and endothelial nitric oxide synthase (eNOS) phosphorylation induced by myocardial I/R injury was limited by CPU0213 (P < 0.05). These data suggest that CPU0123, a non-selective antagonist, has protective effects against myocardial I/R injury in rats, which may be related to the Akt/eNOS pathway.