929 resultados para basis of the solution space of a homogeneous sparse linear system
Resumo:
We introduce a computational method to optimize the in vitro evolution of proteins. Simulating evolution with a simple model that statistically describes the fitness landscape, we find that beneficial mutations tend to occur at amino acid positions that are tolerant to substitutions, in the limit of small libraries and low mutation rates. We transform this observation into a design strategy by applying mean-field theory to a structure-based computational model to calculate each residue's structural tolerance. Thermostabilizing and activity-increasing mutations accumulated during the experimental directed evolution of subtilisin E and T4 lysozyme are strongly directed to sites identified by using this computational approach. This method can be used to predict positions where mutations are likely to lead to improvement of specific protein properties.
Resumo:
The Internet has created new opportunities for librarians to develop information systems that are readily accessible at the point of care. This paper describes the multiyear process used to justify, fund, design, develop, promote, and evaluate a rehabilitation prototype of a point-of-care, team-based information system (PoinTIS) and train health care providers to use this prototype for their spinal cord injury and traumatic brain injury patient care and education activities. PoinTIS is a successful model for librarians in the twenty-first century to serve as publishers of information created or used by their parent organizations and to respond to the opportunities for information dissemination provided by recent technological advances.
Resumo:
Using genetically engineered glomerular mesangial cells, an in vivo gene transfer approach was developed that specifically targets the renal glomerulus. By combining this system with a tetracycline (Tc)-responsive promoter, the present study aimed to create a reversible on/off system for site-specific in vivo control of exogenous gene activity within the glomerulus. In the Tc regulatory system, a Tc-controlled transactivator (tTA) encoded by a regulator plasmid induces target gene transcription by binding to a tTA-responsive promoter located in a response plasmid. Tc inhibits this tTA-dependent transactivation via its affinity for tTA. In double-transfected cells, therefore, the activity of a transgene can be controlled by Tc. Cultured rat mesangial cells were cotransfected with a regulator plasmid and a response plasmid that introduces a beta-galactosidase gene. In vitro, stable double-transfectant MtTAG cells exhibited no beta-galactosidase activity in the presence of Tc. However, following withdrawal of Tc from culture media, expression of beta-galactosidase was induced within 24 h. When Tc was again added, the expression was rapidly resuppressed. Low concentrations of Tc were sufficient to maintain the silent state of tTA-dependent promoter. MtTAG cells were then transferred into the rat glomeruli via renal artery injection. In the isolated chimeric glomeruli, expression of beta-galactosidase was induced ex vivo in the absence of Tc, whereas it was repressed in its presence. When Tc-pretreated MtTAG cells were transferred into the glomeruli of untreated rats, beta-galactosidase expression was induced in vivo within 3 days. Oral administration of Tc dramatically suppressed this induction. These data demonstrate the feasibility of using mesangial cell vectors combined with the Tc regulatory system for site-specific in vivo control of exogenous gene expression in the glomerulus.
Resumo:
The yeast Saccharomyces cerevisiae has two separate systems for zinc uptake. One system has high affinity for substrate and is induced in zinc-deficient cells. The second system has lower affinity and is not highly regulated by zinc status. The ZRT1 gene encodes the transporter for the high-affinity system, called Zrt1p. The predicted amino acid sequence of Zrt1p is similar to that of Irt1p, a probable Fe(II) transporter from Arabidopsis thaliana. Like Irt1p, Zrt1p contains eight potential transmembrane domains and a possible metal-binding domain. Consistent with the proposed role of ZRT1 in zinc uptake, overexpressing this gene increased high-affinity uptake activity, whereas disrupting it eliminated that activity and resulted in poor growth of the mutant in zinc-limited media. Furthermore, ZRT1 mRNA levels and uptake activity were closely correlated, as was zinc-limited induction of a ZRT1-lacZ fusion. These results suggest that ZRT1 is regulated at the transcriptional level by the intracellular concentration of zinc. ZRT1 is an additional member of a growing family of metal transport proteins.
Resumo:
EU-Russia cooperation in the framework of the Common Space on Freedom, Security and Justice, launched almost a decade ago in 2003, has borne fruit more in the security aspects than the justice and liberty-related policy areas. This study assesses the uneven cooperation on justice and home affairs between the EU and Russia, while delving into the intersection between cooperation on justice, liberty and security and the promotion of human rights, democracy and rule of law in EU-Russia relations. The study concludes by proposing a set of policy recommendations to the European Parliament for playing a more active role in this important field of cooperation between the EU and Russia.
Resumo:
Solar nebula processes led to a depletion of volatile elements in different chondrite groups when compared to the bulk chemical composition of the solar system deduced from the Sun's photosphere. For moderately-volatile elements, this depletion primarily correlates with the element condensation temperature and is possibly caused by incomplete condensation from a hot solar nebula, evaporative loss from the precursor dust, and/or inherited from the interstellar medium. Element concentrations and interelement ratios of volatile elements do not provide a clear picture about responsible mechanisms. Here, the abundance and stable isotope composition of the moderately- to highly-volatile element Se are investigated in carbonaceous, ordinary, and enstatite chondrites to constrain the mechanism responsible for the depletion of volatile elements in planetary bodies of the inner solar system and to define a δ(82/78)Se value for the bulk solar system. The δ(82/78)Se of the studied chondrite falls are identical within their measurement uncertainties with a mean of −0.20±0.26‰ (2 s.d., n=14n=14, relative to NIST SRM 3149) despite Se abundance depletions of up to a factor of 2.5 with respect to the CI group. The absence of resolvable Se isotope fractionation rules out a kinetic Rayleigh-type incomplete condensation of Se from the hot solar nebula or partial kinetic evaporative loss on the precursor material and/or the parent bodies. The Se depletion, if acquired during partial condensation or evaporative loss, therefore must have occurred under near equilibrium conditions to prevent measurable isotope fractionation. Alternatively, the depletion and cooling of the nebula could have occurred simultaneously due to the continuous removal of gas and fine particles by the solar wind accompanied by the quantitative condensation of elements from the pre-depleted gas. In this scenario the condensation of elements does not require equilibrium conditions to avoid isotope fractionation. The results further suggest that the processes causing the high variability of Se concentrations and depletions in ordinary and enstatite chondrites did not involve any measurable isotope fractionation. Different degrees of element depletions and isotope fractionations of the moderately-volatile elements Zn, S, and Se in ordinary and enstatite chondrites indicate that their volatility is controlled by the thermal stabilities of their host phases and not by the condensation temperature under canonical nebular conditions.
Resumo:
Mode of access: Internet.
Resumo:
CIS Microfiche Accession Numbers: CIS 89 H381-7
Resumo:
Federal Transit Administration, Washington, D.C.
Resumo:
Shipping list no.: 85-926-P.
Resumo:
Mode of access: Internet.