917 resultados para asymptotic linearity
Resumo:
We study two-dimensional (2D) turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form νμ(−Δ)μ. By “monoscale-like” we mean that the forcing is applied over a finite range of wavenumbers kmin≤k≤kmax, and that the ratio of enstrophy injection η≥0 to energy injection ε≥0 is bounded by kmin2ε≤η≤kmax2ε. Such a forcing is frequently considered in theoretical and numerical studies of 2D turbulence. It is shown that for μ≥0 the asymptotic behaviour satisfies ∥u∥12≤kmax2∥u∥2, where ∥u∥2 and ∥u∥12 are the energy and enstrophy, respectively. If the condition of monoscale-like forcing holds only in a time-mean sense, then the inequality holds in the time mean. It is also shown that for Navier–Stokes turbulence (μ=1), the time-mean enstrophy dissipation rate is bounded from above by 2ν1kmax2. These results place strong constraints on the spectral distribution of energy and enstrophy and of their dissipation, and thereby on the existence of energy and enstrophy cascades, in such systems. In particular, the classical dual cascade picture is shown to be invalid for forced 2D Navier–Stokes turbulence (μ=1) when it is forced in this manner. Inclusion of Ekman drag (μ=0) along with molecular viscosity permits a dual cascade, but is incompatible with the log-modified −3 power law for the energy spectrum in the enstrophy-cascading inertial range. In order to achieve the latter, it is necessary to invoke an inverse viscosity (μ<0). These constraints on permissible power laws apply for any spectrally localized forcing, not just for monoscale-like forcing.
Resumo:
The concept of a slowest invariant manifold is investigated for the five-component model of Lorenz under conservative dynamics. It is shown that Lorenz's model is a two-degree-of-freedom canonical Hamiltonian system, consisting of a nonlinear vorticity-triad oscillator coupled to a linear gravity wave oscillator, whose solutions consist of regular and chaotic orbits. When either the Rossby number or the rotational Froude number is small, there is a formal separation of timescales, and one can speak of fast and slow motion. In the same regime, the coupling is weak, and the Kolmogorov–Arnold-Moser theorem is shown to apply. The chaotic orbits are inherently unbalanced and are confined to regions sandwiched between invariant tori consisting of quasi-periodic regular orbits. The regular orbits generally contain free fast motion, but a slowest invariant manifold may be geometrically defined as the set of all slow cores of invariant tori (defined by zero fast action) that are smoothly related to such cores in the uncoupled system. This slowest invariant manifold is not global; in fact, its structure is fractal; but it is of nearly full measure in the limit of weak coupling. It is also nonlinearly stable. As the coupling increases, the slowest invariant manifold shrinks until it disappears altogether. The results clarify previous definitions of a slowest invariant manifold and highlight the ambiguity in the definition of “slowness.” An asymptotic procedure, analogous to standard initialization techniques, is found to yield nonzero free fast motion even when the core solutions contain none. A hierarchy of Hamiltonian balanced models preserving the symmetries in the original low-order model is formulated; these models are compared with classic balanced models, asymptotically initialized solutions of the full system and the slowest invariant manifold defined by the core solutions. The analysis suggests that for sufficiently small Rossby or rotational Froude numbers, a stable slowest invariant manifold can be defined for this system, which has zero free gravity wave activity, but it cannot be defined everywhere. The implications of the results for more complex systems are discussed.
Resumo:
We consider the problem of constructing balance dynamics for rapidly rotating fluid systems. It is argued that the conventional Rossby number expansion—namely expanding all variables in a series in Rossby number—is secular for all but the simplest flows. In particular, the higher-order terms in the expansion grow exponentially on average, and for moderate values of the Rossby number the expansion is, at best, useful only for times of the order of the doubling times of the instabilities of the underlying quasi-geostrophic dynamics. Similar arguments apply in a wide class of problems involving a small parameter and sufficiently complex zeroth-order dynamics. A modified procedure is proposed which involves expanding only the fast modes of the system; this is equivalent to an asymptotic approximation of the slaving relation that relates the fast modes to the slow modes. The procedure is systematic and thus capable, at least in principle, of being carried to any order—unlike procedures based on truncations. We apply the procedure to construct higher-order balance approximations of the shallow-water equations. At the lowest order quasi-geostrophy emerges. At the next order the system incorporates gradient-wind balance, although the balance relations themselves involve only linear inversions and hence are easily applied. There is a large class of reduced systems associated with various choices for the slow variables, but the simplest ones appear to be those based on potential vorticity.
Resumo:
The spatial structure of beta-plane Rossby waves in a sinusoidal basic zonal flow U 0cos(γ,y) is determined analytically in the (stable) asymptotic limit of weak shear, U 0γ2 0/β≈1. The propagating neutral normal modes are found to take their greatest amplitude in the region of maximum westerly flow, while their most rapid phase variation is achieved in the region of maximum easterly flow. These results are shown to be consistent with what is obtained by ray-tracing methods in the limit of small meridional disturbance wavelength.
Resumo:
In this paper, we obtain quantitative estimates for the asymptotic density of subsets of the integer lattice Z2 that contain only trivial solutions to an additive equation involving binary forms. In the process we develop an analogue of Vinogradov’s mean value theorem applicable to binary forms.
Resumo:
Geophysical fluid models often support both fast and slow motions. As the dynamics are often dominated by the slow motions, it is desirable to filter out the fast motions by constructing balance models. An example is the quasi geostrophic (QG) model, which is used widely in meteorology and oceanography for theoretical studies, in addition to practical applications such as model initialization and data assimilation. Although the QG model works quite well in the mid-latitudes, its usefulness diminishes as one approaches the equator. Thus far, attempts to derive similar balance models for the tropics have not been entirely successful as the models generally filter out Kelvin waves, which contribute significantly to tropical low-frequency variability. There is much theoretical interest in the dynamics of planetary-scale Kelvin waves, especially for atmospheric and oceanic data assimilation where observations are generally only of the mass field and thus do not constrain the wind field without some kind of diagnostic balance relation. As a result, estimates of Kelvin wave amplitudes can be poor. Our goal is to find a balance model that includes Kelvin waves for planetary-scale motions. Using asymptotic methods, we derive a balance model for the weakly nonlinear equatorial shallow-water equations. Specifically we adopt the ‘slaving’ method proposed by Warn et al. (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 723–739), which avoids secular terms in the expansion and thus can in principle be carried out to any order. Different from previous approaches, our expansion is based on a long-wave scaling and the slow dynamics is described using the height field instead of potential vorticity. The leading-order model is equivalent to the truncated long-wave model considered previously (e.g. Heckley & Gill, Q. J. R. Meteorol. Soc., vol. 110, 1984, pp. 203–217), which retains Kelvin waves in addition to equatorial Rossby waves. Our method allows for the derivation of higher-order models which significantly improve the representation of Rossby waves in the isotropic limit. In addition, the ‘slaving’ method is applicable even when the weakly nonlinear assumption is relaxed, and the resulting nonlinear model encompasses the weakly nonlinear model. We also demonstrate that the method can be applied to more realistic stratified models, such as the Boussinesq model.
Resumo:
Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the barrel cortex was used as the input to the model. The model output was the time series of the changes in regional cerebral blood flow (CBF). We show that this model can provide excellent fit of the CBF responses for stimulus durations of up to 16 s. The structure of the model consisted of two coupled components representing vascular dilation and constriction. The complex temporal characteristics of the CBF time series were reproduced by the relatively simple balance of these two components. We show that the impulse response obtained under the 16-s duration stimulation condition generalised to provide a good prediction to the data from the shorter duration stimulation conditions. Furthermore, by optimising three out of the total of nine model parameters, the variability in the data can be well accounted for over a wide range of stimulus conditions. By establishing linearity, classic system analysis methods can be used to generate and explore a range of equivalent model structures (e.g., feed-forward or feedback) to guide the experimental investigation of the control of vascular dilation and constriction following stimulation.
Resumo:
We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.
Resumo:
The author developed two GUIs for asymptotic Bode plots and identification from such plots aimed at improving the learning of frequency response methods: these were presented at UKACC Control 2012. Student feedback and reflection by the author suggested various improvements to these GUIs, which have now been implemented. This paper reviews the earlier work, describes the improvements, and includes positive feedback from the students on the GUIs and how they have helped their understanding of the methods.
Resumo:
Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant.
Resumo:
We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.
Resumo:
We study the spectrum of a one-dimensional Dirac operator pencil, with a coupling constant in front of the potential considered as the spectral parameter. Motivated by recent investigations of graphene waveguides, we focus on the values of the coupling constant for which the kernel of the Dirac operator contains a square integrable function. In physics literature such a function is called a confined zero mode. Several results on the asymptotic distribution of coupling constants giving rise to zero modes are obtained. In particular, we show that this distribution depends in a subtle way on the sign variation and the presence of gaps in the potential. Surprisingly, it also depends on the arithmetic properties of certain quantities determined by the potential. We further observe that variable sign potentials may produce complex eigenvalues of the operator pencil. Some examples and numerical calculations illustrating these phenomena are presented.
Resumo:
The stability of stationary flow of a two-dimensional ice sheet is studied when the ice obeys a power flow law (Glen's flow law). The mass accumulation rate at the top is assumed to depend on elevation and span and the bed supporting the ice sheet consists of an elastic layer lying on a rigid surface. The normal perturbation of the free surface of the ice sheet is a singular eigenvalue problem. The singularity of the perturbation at the front of the ice sheet is considered using matched asymptotic expansions, and the eigenvalue problem is seen to reduce to that with fixed ice front. Numerical solution of the perturbation eigenvalue problem shows that the dependence of accumulation rate on elevation permits the existence of unstable solutions when the equilibrium line is higher than the bed at the ice divide. Alternatively, when the equilibrium line is lower than the bed, there are only stable solutions. Softening of the bed, expressed through a decrease of its elastic modulus, has a stabilising effect on the ice sheet.
Resumo:
We present a mathematical model describing the inward solidification of a slab, a circular cylinder and a sphere of binary melt kept below its equilibrium freezing temperature. The thermal and physical properties of the melt and solid are assumed to be identical. An asymptotic method, valid in the limit of large Stefan number is used to decompose the moving boundary problem for a pure substance into a hierarchy of fixed-domain diffusion problems. Approximate, analytical solutions are derived for the inward solidification of a slab and a sphere of a binary melt which are compared with numerical solutions of the unapproximated system. The solutions are found to agree within the appropriate asymptotic regime of large Stefan number and small time. Numerical solutions are used to demonstrate the dependence of the solidification process upon the level of impurity and other parameters. We conclude with a discussion of the solutions obtained, their stability and possible extensions and refinements of our study.
Resumo:
This paper considers the effect of using a GARCH filter on the properties of the BDS test statistic as well as a number of other issues relating to the application of the test. It is found that, for certain values of the user-adjustable parameters, the finite sample distribution of the test is far-removed from asymptotic normality. In particular, when data generated from some completely different model class are filtered through a GARCH model, the frequency of rejection of iid falls, often substantially. The implication of this result is that it might be inappropriate to use non-rejection of iid of the standardised residuals of a GARCH model as evidence that the GARCH model ‘fits’ the data.