963 resultados para assessments
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
The Iowa Department of Natural Resources uses benthic macroinvertebrate and fish sampling data to assess stream biological condition and the support status of designated aquatic life uses (Wilton 2004; IDNR 2013). Stream physical habitat data assist with the interpretation of biological sampling results by quantifying important physical characteristics that influence a stream’s ability to support a healthy aquatic community (Heitke et al., 2006; Rowe et al. 2009; Sindt et al., 2012). This document describes aquatic community sampling and physical habitat assessment procedures currently followed in the Iowa stream biological assessment program. Standardized biological sampling and physical habitat assessment procedures were first established following a pilot sampling study in 1994 (IDNR 1994a, 1994b). The procedure documents were last updated in 2001 (IDNR 2001a; 2001b). The biological sampling and physical habitat assessment procedures described below are evaluated on a continual basis. Revision of this working document will occur periodically to reflect additional changes.
Resumo:
Unlike the evaluation of single items of scientific evidence, the formal study and analysis of the jointevaluation of several distinct items of forensic evidence has to date received some punctual, ratherthan systematic, attention. Questions about the (i) relationships among a set of (usually unobservable)propositions and a set of (observable) items of scientific evidence, (ii) the joint probative valueof a collection of distinct items of evidence as well as (iii) the contribution of each individual itemwithin a given group of pieces of evidence still represent fundamental areas of research. To somedegree, this is remarkable since both, forensic science theory and practice, yet many daily inferencetasks, require the consideration of multiple items if not masses of evidence. A recurrent and particularcomplication that arises in such settings is that the application of probability theory, i.e. the referencemethod for reasoning under uncertainty, becomes increasingly demanding. The present paper takesthis as a starting point and discusses graphical probability models, i.e. Bayesian networks, as frameworkwithin which the joint evaluation of scientific evidence can be approached in some viable way.Based on a review of existing main contributions in this area, the article here aims at presentinginstances of real case studies from the author's institution in order to point out the usefulness andcapacities of Bayesian networks for the probabilistic assessment of the probative value of multipleand interrelated items of evidence. A main emphasis is placed on underlying general patterns of inference,their representation as well as their graphical probabilistic analysis. Attention is also drawnto inferential interactions, such as redundancy, synergy and directional change. These distinguish thejoint evaluation of evidence from assessments of isolated items of evidence. Together, these topicspresent aspects of interest to both, domain experts and recipients of expert information, because theyhave bearing on how multiple items of evidence are meaningfully and appropriately set into context.
Resumo:
News from Iowa’s Center for Agricultural Safety and Health (I-CASH)
Resumo:
This plan was developed to assist Alburnett with the management, budgeting and future planning of their urban forest. Across the state, forestry budgets continue to decrease with more and more of that money spent on tree removal. With the anticipated arrival of Emerald Ash Borer (EAB), an invasive pest that kills native ash trees, it is time to prepare for the increased costs of tree removal and replacement planting. With proper planning and management of the current canopy in Alburnett, these costs can be extended over years and public safety issues from dead and dying ash trees mitigated. Trees are an important component of Alburnett’s infrastructure and one of the greatest assets to the community. The benefits of trees are immense. Trees provide the community with improved air quality, stormwater runoff interception, energy conservation, lower traffic speeds, increased property values, reduced crime, improved mental health and create a desirable place to live, to name just a few benefits. It is essential that these benefits be maintained for the people of Alburnett and future generations through good urban forestry management. Good urban forestry management involves setting goals and developing management strategies to achieve these goals. An essential part of developing management strategies is a comprehensive public tree inventory. The inventory supplies information that will be used for maintenance, removal schedules, tree planting and budgeting. Basing actions on this information will help meet Alburnett’s urban forestry goals.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
OBJECTIVE: To compare interval breast cancer rates (ICR) between a biennial organized screening programme in Norway and annual opportunistic screening in North Carolina (NC) for different conceptualizations of interval cancer. SETTING: Two regions with different screening practices and performance. METHODS: 620,145 subsequent screens (1996-2002) performed in women aged 50-69 and 1280 interval cancers were analysed. Various definitions and quantification methods for interval cancers were compared. RESULTS: ICR for one year follow-up were lower in Norway compared with NC both when the rate was based on all screens (0.54 versus 1.29 per 1000 screens), negative final assessments (0.54 versus 1.29 per 1000 screens), and negative screening assessments (0.53 versus 1.28 per 1000 screens). The rate of ductal carcinoma in situ was significantly lower in Norway than in NC for cases diagnosed in both the first and second year after screening. The distributions of histopathological tumour size and lymph node involvement in invasive cases did not differ between the two regions for interval cancers diagnosed during the first year after screening. In contrast, in the second year after screening, tumour characteristics remained stable in Norway but became prognostically more favorable in NC. CONCLUSION: Even when applying a common set of definitions of interval cancer, the ICR was lower in Norway than in NC. Different definitions of interval cancer did not influence the ICR within Norway or NC. Organization of screening and screening performance might be major contributors to the differences in ICR between Norway and NC.
Resumo:
Newer antiepileptic drugs (AEDs) are increasingly prescribed and seem to have a comparable efficacy as the classical AEDs; however, their impact on status epilepticus (SE) prognosis has received little attention. In our prospective SE database (2006-2010), we assessed the use of older versus newer AEDs (levetiracetam, pregabalin, topiramate, lacosamide) over time and its relationship to outcome (return to clinical baseline conditions, new handicap, or death). Newer AEDs were used more often toward the end of the study period (42% of episodes versus 30%). After adjustment for SE etiology, SE severity score, and number of compounds needed to terminate SE, newer AEDs were independently related to a reduced likelihood of return to baseline (p<0.001) but not to increased mortality. These findings seem in line with recent findings on refractory epilepsy. Also, in view of the higher price of the newer AEDs, well-designed, prospective assessments analyzing the impact of newer AEDs on efficacy and tolerability in patients with SE appear mandatory.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.