910 resultados para applied cognitive linguistics
Resumo:
The performance of an underlay cognitive radio (CR) system, which can transmit when the primary is on, is curtailed by tight constraints on the interference it can cause to the primary receiver. Transmit antenna selection (AS) improves the performance of underlay CR by exploiting spatial diversity but with less hardware. However, the selected antenna and its transmit power now both depend on the channel gains to the secondary and primary receivers. We develop a novel Chernoffbound based optimal AS and power adaptation (CBBOASPA) policy that minimizes an upper bound on the symbol error probability (SEP) at the secondary receiver, subject to constraints on the average transmit power and the average interference to the primary. The optimal antenna and its power are presented in an insightful closed form in terms of the channel gains. We then analyze the SEP of CBBOASPA. Extensive benchmarking shows that the SEP of CBBOASPA for both MPSK and MQAM is one to two orders of magnitude lower than several ad hoc AS policies and even optimal AS with on-off power control.
Resumo:
In an underlay cognitive radio (CR) system, a secondary user can transmit when the primary is transmitting but is subject to tight constraints on the interference it causes to the primary receiver. Amplify-and-forward (AF) relaying is an effective technique that significantly improves the performance of a CR by providing an alternate path for the secondary transmitter's signal to reach the secondary receiver. We present and analyze a novel optimal relay gain adaptation policy (ORGAP) in which the relay is interference aware and optimally adapts both its gain and transmit power as a function of its local channel gains. ORGAP minimizes the symbol error probability at the secondary receiver subject to constraints on the average relay transmit power and on the average interference caused to the primary. It is different from ad hoc AF relaying policies and serves as a new and fundamental theoretical benchmark for relaying in an underlay CR. We also develop a near-optimal and simpler relay gain adaptation policy that is easy to implement. An extension to a multirelay scenario with selection is also developed. Our extensive numerical results for single and multiple relay systems quantify the power savings achieved over several ad hoc policies for both MPSK and MQAM constellations.
Resumo:
We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.
Resumo:
This paper investigates the use of adaptive group testing to find a spectrum hole of a specified bandwidth in a given wideband of interest. We propose a group testing-based spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy by testing a group of adjacent subbands in a single test. This is enabled by a simple and easily implementable sub-Nyquist sampling scheme for signal acquisition by the cognitive radios (CRs). The sampling scheme deliberately introduces aliasing during signal acquisition, resulting in a signal that is the sum of signals from adjacent subbands. Energy-based hypothesis tests are used to provide an occupancy decision over the group of subbands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes of a specified bandwidth. We extend this framework to a multistage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including noncontiguous spectrum hole search. Furthermore, we provide the analytical means to optimize the group tests with respect to the detection thresholds, number of samples, group size, and number of stages to minimize the detection delay under a given error probability constraint. Our analysis allows one to identify the sparsity and SNR regimes where group testing can lead to significantly lower detection delays compared with a conventional bin-by-bin energy detection scheme; the latter is, in fact, a special case of the group test when the group size is set to 1 bin. We validate our analytical results via Monte Carlo simulations.
Resumo:
The effect of applied DC potentials on the bioleaching of a chalcopyrite concentrate in the presence of Acidithiobacillus ferrooxidans is discussed. Copper dissolution was the highest at an applied potential of +600mV (SCE), while all the dissolved copper got cathodically deposited at a negative potential of -600mV (SCE). Electrobioleaching at an applied potential of +600mV (SCE) was established at different pulp densities as a function of time. The effect of applied potentials and electrolytic currents on the activity and growth of bacterial cells was assessed Preadaptation of bacterial cells to the concentrate slurry and electrolytic growth conditions significantly enhanced copper dissolution. Electrochemical and biochemical mechanisms involved in electrobioleaching are illustrated with respect to oxidative dissolution and biocatalysis of anodic oxidation.
Resumo:
Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semiautomated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of similar to 1 mu N on an individual pillar and a total average force of similar to 7.68 mu N. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4Hz applying an average force of similar to 1.58 mu N on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment. (C) 2015 AIP Publishing LLC.
Resumo:
A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran J. Fluid Mech. 705, 322 (2012)]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude.
Resumo:
This work aims at asymptotically accurate dimensional reduction of non-linear multi-functional film-fabric laminates having specific application in design of envelopes for High Altitude Airships (HAA). The film-fabric laminate for airship envelope consists of a woven fabric core coated with thin films on each face. These films provide UV protection and Helium leakage prevention, while the core provides required structural strength. This problem is both geometrically and materially non-linear. To incorporate the geometric non-linearity, generalized warping functions are used and finite deformations are allowed. The material non-linearity is handled by using hyper-elastic material models for each layer. The development begins with three-dimensional (3-D) nonlinear elasticity and mathematically splits the analysis into a one-dimensional through-the-thickness analysis and a two-dimensional (2-D) plate analysis. The through-the-thickness analysis provides the 2-D constitutive law which is then given as an input to the 2-D reference surface analysis. The dimensional reduction is carried out using Variational Asymptotic Method (VAM) for moderate strains and very small thickness-to-wavelength ratio. It features the identification and utilization of additional small parameters such as ratio of thicknesses and stiffness coefficients of core and films. Closed form analytical expressions for warping functions and 2-D constitutive law of the film-fabric laminate are obtained.
Resumo:
The Cognitive Radio (CR) is a promising technology which provides a novel way to subjugate the issue of spectrum underutilization caused due to the fixed spectrum assignment policies. In this paper we report the design and implementation of a soft-real time CR MAC, consisting of multiple secondary users, in a frequency hopping (Fit) primary scenario. This MAC is capable of sensing the spectrum and dynamically allocating the available frequency bands to multiple CR users based on their QoS requirements. As the primary is continuously hopping, a method has also been implemented to detect the hop instant of the primary network. Synchronization usually requires real time support, however we have been able to achieve this with a soft-real time technique which enables a fully software implementation of CR MAC layer. We demonstrate the wireless transmission and reception of video over this CR testbed through opportunistic spectrum access. The experiments carried out use an open source software defined radio package called GNU Radio and a basic radio hardware component USRP.
Resumo:
Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.
Resumo:
Action recognition plays an important role in various applications, including smart homes and personal assistive robotics. In this paper, we propose an algorithm for recognizing human actions using motion capture action data. Motion capture data provides accurate three dimensional positions of joints which constitute the human skeleton. We model the movement of the skeletal joints temporally in order to classify the action. The skeleton in each frame of an action sequence is represented as a 129 dimensional vector, of which each component is a 31) angle made by each joint with a fixed point on the skeleton. Finally, the video is represented as a histogram over a codebook obtained from all action sequences. Along with this, the temporal variance of the skeletal joints is used as additional feature. The actions are classified using Meta-Cognitive Radial Basis Function Network (McRBFN) and its Projection Based Learning (PBL) algorithm. We achieve over 97% recognition accuracy on the widely used Berkeley Multimodal Human Action Database (MHAD).
Resumo:
Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio (CR) network. However, unlike conventional relaying, the state of the links between the relay and the primary receiver affects the choice of the relay. Further, while the optimal amplify-and-forward (AF) relay selection rule for underlay CR is well understood for the peak interference-constraint, this is not so for the less conservative average interference constraint. For the latter, we present three novel AF relay selection (RS) rules, namely, symbol error probability (SEP)-optimal, inverse-of-affine (IOA), and linear rules. We analyze the SEPs of the IOA and linear rules and also develop a novel, accurate approximation technique for analyzing the performance of AF relays. Extensive numerical results show that all the three rules outperform several RS rules proposed in the literature and generalize the conventional AF RS rule.