861 resultados para anti-bacterial agents
Resumo:
Noro virus, a positive single stranded RNA virus has been identified as a major etiologic agent in food borne gastroenteritis and diarrheal diseases. The emergence of this organism as a major non-bacterial cause in such outbreaks is partly due to the improved diagnostic tools like Reverse Transcription Polymerase chain reaction (RTPCR) that enable its detection. Noro virus accounts for nearly 96% of non-bacterial gastroenteritis outbreaks in US (1). Travelers' Diarrhea (TD) has remained a constant public health risk in the developed nations for decades and bacteria like Entero toxigenic Escherichia coli, Entero aggregative Escherichia coli have been described as the main etiologic agents for TD (2-4). A possible viral contribution to TD has been discovered in two studies (5, 6). The current study was designed to determine the prevalence of Noro virus in a population of 107 US students with TD acquired in Mexico in 2005 and to compare the prevalence to the prevalence of Noro virus in a similar study done in 2004. This study involved the testing of clinical stool specimens from 107 subjects in 2005 for the presence of Noro virus using RTPCR. The prevalence of Noro virus in 2004 used for comparison to 2005 data was obtained from published data (5). All subjects were recruited as TD subjects in a randomized, double-blinded clinical trial comparing a standard three day dosing of Rifaximin with and without an anti motility drug Loperamide. The prevalence of Noro virus geno group I was similar in both years, but geno group II prevalence differed across the two years (p = 0.003). This study finding suggests that the prevalence of Noro virus geno groups varies with time even within a specific geographic location. This study emphasizes the need for further systematic epidemiologic studies to determine the molecular epidemiology and the prevalence patterns of different geno groups of this virus. These are essential to planning and implementation of public health measures to lessen the burden of TD due to Noro virus infection among US travelers. ^
Resumo:
The incidence rates of travelers' diarrhea (TD) have remained unchanged for the last fifty years. More recently, there have been increasing recommendations for self-initiated therapy and even prophylactic therapy for TD. There is no recent data on the in vitro activities of commonly used antibiotics for TD therapy and whether there have been any changes in susceptibilities over the last ten years. 456 enteropathogens were isolated from adult travelers to Mexico, India, and Guatemala between the years 2006 to 2008. MICs were determined for 10 different antimicrobials by the agar dilution method. Traditional antibiotics such as ampicillin, trimethoprim/sulfamethoxazole, and doxycycline continue to show high levels of resistance. Current first line antibiotic agents including fluoroquinolones and azithromycin had significantly higher MICs when compared to 10 years ago and MIC90 levels were beyond the CSLI cutoffs for resistance. There were significant geographical differences in resistance patterns when comparing Central America with India. Entertoxigenic Escherichia coli (ETEC) isolates were more resistant to ciprofloxacin (p=0.023), and levofloxacin (p=0.0078) in India; whereas, enteroaggregative Escherichia coli (EAEC) isolates from Central America showed more resistance. When compared to MICs of isolates 10 years prior, there was a four to ten-fold increase in MIC90s for ceftriaxone, ciprofloxacin, levofloxacin and azithromycin for both ETEC and EAEC. There were no significant changes in rifaximin MICs over the last ten years, which makes it a promising agent for TD. Rising MICs over time implicate the need for continuous surveillance of susceptibility patterns worldwide and for geography specific recommendations in TD therapy.^
Resumo:
The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.
Resumo:
Angiogenin (Ang), an inducer of neovascularization, is secreted by several types of human tumor cells and appears critical for their growth. The murine anti-Ang monoclonal antibody (mAb) 26–2F neutralizes the activities of Ang and dramatically prevents the establishment and metastatic dissemination of human tumor cell xenografts in athymic mice. However, for use clinically, the well-documented problem of the human anti-globulin antibody response known to occur with murine antibodies requires resolution. As a result, chimeric as well as totally humanized antibodies are currently being evaluated as therapeutic agents for the treatment of several pathological conditions, including malignancy. Therefore, we have constructed a chimeric mouse/human antibody based on the structure of mAb 26–2F. Complementary DNAs from the light and heavy chain variable regions of mAb 26–2F were cloned, sequenced, and genetically engineered by PCR for subcloning into expression vectors that contain human constant region sequences. Transfection of these vectors into nonproducing mouse myeloma cells resulted in the secretion of fully assembled tetrameric molecules. The chimeric antibody (cAb 26–2F) binds to Ang and inhibits its ribonucleolytic and angiogenic activities as potently as mAb 26–2F. Furthermore, the capacities of cAb 26–2F and its murine counterpart to suppress the formation of human breast cancer tumors in athymic mice are indistinguishable. Thus cAb 26–2F, with its retained neutralization capability and likely decreased immunogenicity, may be of use clinically for the treatment of human cancer and related disorders where pathological angiogenesis is a component.
Resumo:
Methionine aminopeptidase (MetAP) exists in two forms (type I and type II), both of which remove the N-terminal methionine from proteins. It previously has been shown that the type II enzyme is the molecular target of fumagillin and ovalicin, two epoxide-containing natural products that inhibit angiogenesis and suppress tumor growth. By using mass spectrometry, N-terminal sequence analysis, and electronic absorption spectroscopy we show that fumagillin and ovalicin covalently modify a conserved histidine residue in the active site of the MetAP from Escherichia coli, a type I enzyme. Because all of the key active site residues are conserved, it is likely that a similar modification occurs in the type II enzymes. This modification, by occluding the active site, may prevent the action of MetAP on proteins or peptides involved in angiogenesis. In addition, the results suggest that these compounds may be effective pharmacological agents against pathogenic and resistant forms of E. coli and other microorganisms.
Resumo:
Selective inhibition of T cell costimulation using the B7-specific fusion protein CTLA4-Ig has been shown to induce long-term allograft survival in rodents. Antibodies preventing the interaction between CD40 and its T cell-based ligand CD154 (CD40L) have been shown in rodents to act synergistically with CTLA4-Ig. It has thus been hypothesized that these agents might be capable of inducing long-term acceptance of allografted tissues in primates. To test this hypothesis in a relevant preclinical model, CTLA4-Ig and the CD40L-specific monoclonal antibody 5C8 were tested in rhesus monkeys. Both agents effectively inhibited rhesus mixed lymphocyte reactions, but the combination was 100 times more effective than either drug alone. Renal allografts were transplanted into nephectomized rhesus monkeys shown to be disparate at major histocompatibility complex class I and class II loci. Control animals rejected in 5–8 days. Brief induction doses of CTLA4-Ig or 5C8 alone significantly prolonged rejection-free survival (20–98 days). Two of four animals treated with both agents experienced extended (>150 days) rejection-free allograft survival. Two animals treated with 5C8 alone and one animal treated with both 5C8 and CTLA4-Ig experienced late, biopsy-proven rejection, but a repeat course of their induction regimen successfully restored normal graft function. Neither drug affected peripheral T cell or B cell counts. There were no clinically evident side effects or rejections during treatment. We conclude that CTLA4-Ig and 5C8 can both prevent and reverse acute allograft rejection, significantly prolonging the survival of major histocompatibility complex-mismatched renal allografts in primates without the need for chronic immunosuppression.
Resumo:
The presence of endotoxin from Gram-negative bacteria signals the innate immune system to up-regulate bacterial clearance and/or killing mechanisms. Paradoxically, such responses also contribute to septic shock, a clinical problem occurring with high frequency in Gram-negative septicemia. CD14 is a receptor for endotoxin (lipopolysaccharide, LPS) and is thought to have an essential role in innate immune responses to infection and thereby in the development of septic shock. Using a novel rabbit model of endotoxic shock produced by multiple exposures to endotoxin, we show that anti-rabbit CD14 mAb, which blocks LPS-CD14 binding, protects against organ injury and death even when the antibody is administered after initial exposures to LPS. In contrast, anti-rabbit tumor necrosis factor mAb treatment fails to protect when administered after LPS injections. These results support the concept that anti-CD14 treatment provides a new therapeutic window for the prevention of pathophysiologic changes that result from cumulative exposures to LPS during septic shock in man.
Resumo:
Fluoroquinolones are antibacterial agents that attack DNA gyrase and topoisomerase IV on chromosomal DNA. The existence of two fluoroquinolone targets and stepwise accumulation of resistance suggested that new quinolones could be found that would require cells to obtain two topoisomerase mutations to display resistance. For wild-type cells to become resistant, the two mutations must be acquired concomitantly. That is expected to occur infrequently. To identify such compounds, fluoroquinolones were tested for the ability to kill a moderately resistant gyrase mutant. Compounds containing a C8-methoxyl group were particularly lethal, and incubation of wild-type cultures on agar containing C8-methoxyl fluoroquinolones produced no resistant mutant, whereas thousands arose during comparable treatment with control compounds lacking the C8 substituent. When the test strain contained a preexisting topoisomerase IV mutation, which by itself conferred no resistance, equally high numbers of resistant mutants were obtained for C8-methoxyl and control compounds. Thus C8-methoxyl fluoroquinolones required two mutations for expression of resistance. Although highly lethal, C8-methoxyl fluoroquinolones were not more effective than C8-H controls at blocking bacterial growth. Consequently, quinolone action involves two events, which we envision as formation of drug–enzyme–DNA complexes followed by release of lethal double-strand DNA breaks. Release of DNA breaks, which must occur less frequently than complex formation, is probably the process stimulated by the C8-methoxyl group. Understanding this stimulation should provide insight into intracellular quinolone action and contribute to development of fluoroquinolones that prevent selection of resistant bacteria.
Resumo:
Among biological catalysts, cytochrome P450 is unmatched in its multiplicity of isoforms, inducers, substrates, and types of chemical reactions catalyzed. In the present study, evidence is given that this versatility extends to the nature of the active oxidant. Although mechanistic evidence from several laboratories points to a hypervalent iron-oxenoid species in P450-catalyzed oxygenation reactions, Akhtar and colleagues [Akhtar, M., Calder, M. R., Corina, D. L. & Wright, J. N. (1982) Biochem. J. 201, 569-580] proposed that in steroid deformylation effected by P450 aromatase an iron-peroxo species is involved. We have shown more recently that purified liver microsomal P450 cytochromes, including phenobarbital-induced P450 2B4, catalyze the analogous deformylation of a series of xenobiotic aldehydes with olefin formation. The investigation presented here on the effect of site-directed mutagenesis of threonine-302 to alanine on the activities of recombinant P450 2B4 with N-terminal amino acids 2-27 deleted [2B4 (delta2-27)] makes use of evidence from other laboratories that the corresponding mutation in bacterial P450s interferes with the activation of dioxygen to the oxenoid species by blocking proton delivery to the active site. The rates of NADPH oxidation, hydrogen peroxide production, and product formation from four substrates, including formaldehyde from benzphetamine N-demethylation, acetophenone from 1-phenylethanol oxidation, cyclohexanol from cyclohexane hydroxylation, and cyclohexene from cyclohexane carboxaldehyde deformylation, were determined with P450s 2B4, 2B4 (delta2-27), and 2B4 (delta2-27) T302A. Replacement of the threonine residue in the truncated cytochrome gave a 1.6- to 2.5-fold increase in peroxide formation in the presence of a substrate, but resulted in decreased product formation from benzphetamine (9-fold), cyclohexane (4-fold), and 1-phenylethanol (2-fold). In sharp contrast, the deformylation of cyclohexane carboxaldehyde by the T302A mutant was increased about 10-fold. On the basis of these findings and our previous evidence that aldehyde deformylation is supported by added H202, but not by artificial oxidants, we conclude that the iron-peroxy species is the direct oxygen donor. It remains to be established which of the many other oxidative reactions involving P450 utilize this species and the extent to which peroxo-iron and oxenoid-iron function as alternative oxygenating agents with the numerous isoforms of this versatile catalyst.
Resumo:
The increased prevalence of multidrug-resistant bacterial pathogens motivated us to attempt to enhance the therapeutic efficacy of bacteriophages. The therapeutic application of phages as antibacterial agents was impeded by several factors: (i) the failure to recognize the relatively narrow host range of phages; (ii) the presence of toxins in crude phage lysates; and (iii) a lack of appreciation for the capacity of mammalian host defense systems, particularly the organs of the reticuloendothelial system, to remove phage particles from the circulatory system. In our studies involving bacteremic mice, the problem of the narrow host range of phage was dealt with by using selected bacterial strains and virulent phage specific for them. Toxin levels were diminished by purifying phage preparations. To reduce phage elimination by the host defense system, we developed a serial-passage technique in mice to select for phage mutants able to remain in the circulatory system for longer periods of time. By this approach we isolated long-circulating mutants of Escherichia coli phage lambda and of Salmonella typhimurium phage P22. We demonstrated that the long-circulating lambda mutants also have greater capability as antibacterial agents than the corresponding parental strain in animals infected with lethal doses of bacteria. Comparison of the parental and mutant lambda capsid proteins revealed that the relevant mutation altered the major phage head protein E. The use of toxin-free, bacteria-specific phage strains, combined with the serial-passage technique, may provide insights for developing phage into therapeutically effective antibacterial agents.
Resumo:
We have previously shown that in neutrophils deprived of granulocyte colony-stimulating factor, apoptosis is preceded by acidification and that the protection against apoptosis conferred on neutrophils by granulocyte colony-stimulating factor is dependent upon delay of this acidification. To test the hypothesis that acidification could be a general feature of apoptosis, we examined intracellular pH changes in another cell line. Jurkat cells, a T-lymphoblastoid line, were induced to undergo apoptosis with anti-Fas IgM, cycloheximide, or exposure to short-wavelength UV light. We found that acidification occurred in response to treatment with these agents and that acidification preceded DNA fragmentation. Jurkat cells were also found to possess an acid endonuclease that is active below pH 6.8, compatible with a possible role for this enzyme in chromatin digestion during apoptosis. Incubation of the cells with the bases imidazole or chloroquine during treatment with anti-Fas antibody or cycloheximide or after UV exposure decreased apoptosis as assessed by nuclear morphology and DNA content. The alkalinizing effect of imidazole and chloroquine was shown by the demonstration that the percentage of cells with an intracellular pH below 6.8 after treatment with anti-Fas antibody, cycloheximide, or UV was diminished in the presence of base as compared with similarly treated cells incubated in the absence of base. We conclude that acidification is an early event in programmed cell death and may be essential for genome destruction.
Resumo:
The inducible SOS system increases the survival of bacteria exposed to DNA-damaging agents by increasing the capacity of error-free and error-prone DNA repair systems. The inducible mutator effect is expected to contribute to the adaptation of bacterial populations to these adverse life conditions by increasing their genetic variability. The evolutionary impact of the SOS system would be even greater if it was also induced under conditions common in nature, such as in resting bacterial populations. The results presented here show that SOS induction and mutagenesis do occur in bacteria in aging colonies on agar plates. The observed SOS induction and mutagenesis are controlled by the LexA repressor and are RecA- and cAMP-dependent.
Resumo:
High-affinity folate receptors (FRs) are expressed at elevated levels on many human tumors. Bispecific antibodies that bind the FR and the T-cell receptor (TCR) mediate lysis of these tumor cells by cytotoxic T lymphocytes. In this report, conjugates that consist of folate covalently linked to anti-TCR antibodies are shown to be potent in mediating lysis of tumor cells that express either the alpha or beta isoform of the FR. Intact antibodies with an average of five folate per molecule exhibited high affinity for FR+ tumor cells but did not bind to FR- tumor cells. Lysis of FR+ cell lines could be detected at concentrations as low as 1 pM (approximately 0.1 ng/ml), which was 1/1000th the concentration required to detect binding to the FR+ cells. Various FR+ mouse tumor cell lines could be targeted with each of three different anti-TCR antibodies that were tested as conjugates. The antibodies included 1B2, a clonotypic antibody specific for the cytotoxic T cell clone 2C; KJ16, an anti-V beta 8 antibody; and 2C11, an anti-CD3 antibody. These antibodies differ in affinities by up to 100-fold, yet the cytolytic capabilities of the folate/antibody conjugates differed by no more than 10-fold. The reduced size (in comparison with bispecific antibodies) and high affinity of folate conjugates suggest that they may be useful as immunotherapeutic agents in targeting tumors that express folate receptors.
Resumo:
MAP30 (Momordica anti-HIV protein of 30 kDa) and GAP31 (Gelonium anti-HIV protein of 31 kDa) are anti-HIV plant proteins that we have identified, purified, and cloned from the medicinal plants Momordica charantia and Gelonium multiflorum. These antiviral agents are capable of inhibiting infection of HIV type 1 (HIV-1) in T lymphocytes and monocytes as well as replication of the virus in already-infected cells. They are not toxic to normal uninfected cells because they are unable to enter healthy cells. MAP30 and GAP31 also possess an N-glycosidase activity on 28S ribosomal RNA and a topological activity on plasmid and viral DNAs including HIV-1 long terminal repeats (LTRs). LTRs are essential sites for integration of viral DNA into the host genome by viral integrase. We therefore investigated the effect of MAP30 and GAP31 on HIV-1 integrase. We report that both of these antiviral agents exhibit dose-dependent inhibition of HIV-1 integrase. Inhibition was observed in all of the three specific reactions catalyzed by the integrase, namely, 3' processing (specific cleavage of the dinucleotide GT from the viral substrate), strand transfer (integration), and "disintegration" (the reversal of strand transfer). Inhibition was studied by using oligonucleotide substrates with sequences corresponding to the U3 and U5 regions of HIV LTR. In the presence of 20 ng of viral substrate, 50 ng of target substrate, and 4 microM integrase, total inhibition was achieved at equimolar concentrations of the integrase and the antiviral proteins, with EC50 values of about 1 microM. Integration of viral DNA into the host chromosome is a vital step in the replicative cycle of retroviruses, including the AIDS virus. The inhibition of HIV-1 integrase by MAP30 and GAP31 suggests that impediment of viral DNA integration may play a key role in the anti-HIV activity of these plant proteins.