928 resultados para antagonist yeasts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, the cannabinoid receptors CB1 and CB2 were shown to modulate bone formation and resorption in vivo, although little is known of the mechanisms underlying this. The effects of cannabinoids on mesenchymal stem cell (MSC) recruitment in whole bone marrow were investigated using either the fibroblastic colony-forming unit (CFU-f) assay or high-density cultures of whole bone marrow. Levels of the CB1 and CB2 receptors were assessed by flow cytometry. Treatment of CFU-f cultures with the endocannabinoid 2-arachidonylglycerol (2-AG) dose-dependently increased fibroblastic and differentiated colony formation along with colony size. The nonspecific agonists CP 55,940 and WIN 55,212 both increased colony numbers, as did the CB2 agonists BML190 and JWH015. The CB1-specific agonist ACEA had no effect, whereas the CB2 antagonist AM630 blocked the effect of the natural cannabinoid tetrahydrocannabivarin, confirming mediation via the CB2 receptor. Treatment of primary bone marrow cultures with 2-AG stimulated proliferation and collagen accumulation, whereas treatment of subcultures of MSC had no effect, suggesting that the target cell is not the MSC but an accessory cell present in bone marrow. Subcultures of MSCs were negative for CB1 and CB2 receptors as shown by flow cytometry, whereas whole bone marrow contained a small population of cells positive for both receptors. These data suggest that cannabinoids may stimulate the recruitment of MSCs from the bone marrow indirectly via an accessory cell and mediated via the CB2 receptor. This recruitment may be one mechanism responsible for the increased bone formation seen after cannabinoid treatment in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: The aim of this report is to study mechanisms of G protein activation by agonists. Experimental approach: The association and dissociation of guanosine 5'-O-(3-[S-35] thio) triphosphate ([S-35] GTP gamma S) binding at G proteins in membranes of CHO cells stably transfected with the human dopamine D-2short receptor was studied in the presence of a range of agonists. Key results: Binding of [S-35] GTPgS was dissociable in the absence of agonist and dissociation was accelerated both in rate and extent by dopamine, an effect which was blocked by the dopamine D-2 receptor antagonist raclopride and by suramin, which inhibits receptor/G protein interaction. A range of agonists of varying efficacy increased the rate of dissociation of [S-35] GTPgS binding, with the more efficacious agonists resulting in faster dissociation. Agonists were able to dissociate about 70% of the pre-bound [S-35] GTPgS, leaving a component which may not be accessible to the agonist-bound receptor. The dissociable component of the [S-35] GTPgS binding was reduced with longer association times and increased [S-35] GTPgS concentrations. Conclusions and implications: These data are consistent with [S-35] GTPgS binding being initially to receptor-linked G proteins and then to G proteins which have separated from the agonist bound receptor. Under the conditions used typically for [S-35] GTPgS binding assays, therefore, much of the agonist-receptor complex remains in proximity to G proteins after they have been activated by agonist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS. Experimental approach: Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro. Key results: The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB1 receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide. Conclusions and implications: We show for the first time that Delta(9)-THCV acts as a functional CB1 receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB1 receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV-and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha 1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha 1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Central cannabinoid systems have been implicated in appetite control through the respective hyperphagic and anorectic actions of CB1 agonists and antagonists. The motivational changes underlying these actions remain to be determined, but may involve alterations to food palatability. Objectives: The mode of action of cannabinoids on ingestion was investigated by examining the effects of exogenous and endogenous agonists, and a selective CB1 receptor antagonist, on licking microstructure in rats ingesting a palatable sucrose solution. Methods: Microstructural analyses of licking for a 10% sucrose solution was performed over a range of agonist and antagonist doses administered to non-deprived, male Lister hooded rats. Results: Delta(9)-tetrahydrocannabinol (0.5, 1 and 3 mg/kg) and anandamide (1 mg/kg and 3 mg/kg) significantly increased total number of licks. This was primarily due to an increase in bout duration rather than bout number. There was a nonsignificant increase in total licks following administration of 2-arachidonoyl glycerol (0.2, 1.0 and 2.0 mg/kg), whereas administration of the CB1 antagonist SR141716 (1 mg/kg and 3 mg/kg) significantly decreased total licks. All drugs, with the exception of anandamide, significantly decreased the intra-bout lick rate. An exponential function fitted to the cumulative lick rate curves for each drug revealed that all compounds altered the asymptote of this function without having any marked effects on the exponent. Conclusions: These data are consistent with endocannabinoid involvement in the mediation of food palatability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reported previously that bone morphogenetic proteins (BMPs) potently suppress CYP17 expression and androgen production by bovine theca interna cells (TC) in vitro. In this study, real-time PCR was used to analyse gene expression in TC and granulosa cell (GC) layers from developing bovine antral follicles (1-18 mm). Abundance of mRNA transcripts for four BMPs (BMP2, BMP4, BMP6, and BMP7) and associated type I (BMPR1A, BMPR1B, ACVR1 and ACVR1B) and type II (BMPR2, ACVR2A and ACVR2B) receptors showed relatively modest, though significant, changes during follicle development. BMP2 was selectively expressed in GC, while BMP6, BMP7 and betaglycan (TGFBR3) were more abundant in TC. Abundance of betaglycan mRNA (inhibin co-receptor) in TC increased progressively (fivefold; P<0.001) as follicles grew from 1-2 to 9-10 mm. This suggests a shift in thecal responsiveness to GC-derived inhibin, produced in increasing amounts as follicles achieve dominance. This prompted us to investigate whether inhibin can function as a physiological antagonist of BMP action on bovine TC in vitro, in a manner comparable to that for activin signalling. BMP4, BMP6 and BMP7 abolished LH-induced androstenedione secretion and suppressed CYP17 mRNA >200-fold (P<0.001), while co-treatment with inhibin-A reversed the suppressive action of BMP in each case (P<0.001). Results support a physiological role for granulosa-derived inhibin as an antagonist of BMP action on thecal androgen synthesis. A shift in intrafollicular balance between thecal BMP signalling (inhibitory for androgen synthesis) and betaglycan-dependent inhibin signalling (stimulatory for androgen synthesis) accords with the physiological requirement to deliver an adequate supply of aromatase substrate to GC of developing follicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Peroxisome proliferator-activated receptor-(gamma) (PPAR(gamma)) is expressed in human platelets although in the absence of genomic regulation in these cells, its functions are unclear. OBJECTIVE: In the present study, we aimed to demonstrate the ability of PPAR(gamma) ligands to modulate collagen-stimulated platelet function and suppress activation of the glycoprotein VI (GPVI) signaling pathway. METHODS: Washed platelets were stimulated with PPAR(gamma) ligands in the presence and absence of PPAR(gamma) antagonist GW9662 and collagen-induced aggregation was measured using optical aggregometry. Calcium levels were measured by spectrofluorimetry in Fura-2AM-loaded platelets and tyrosine phosphorylation levels of receptor-proximal components of the GPVI signaling pathway were measured using immunoblot analysis. The role of PPAR(gamma) agonists in thrombus formation was assessed using an in vitro model of thrombus formation under arterial flow conditions. RESULTS: PPAR(gamma) ligands inhibited collagen-stimulated platelet aggregation that was accompanied by a reduction in intracellular calcium mobilization and P-selectin exposure. PPAR(gamma) ligands inhibited thrombus formation under arterial flow conditions. The incorporation of GW9662 reversed the inhibitory actions of PPAR(gamma) agonists, implicating PPAR(gamma) in the effects observed. Furthermore, PPAR(gamma) ligands were found to inhibit tyrosine phosphorylation levels of multiple components of the GPVI signaling pathway. PPAR(gamma) was found to associate with Syk and LAT after platelet activation. This association was prevented by PPAR(gamma) agonists, indicating a potential mechanism for PPAR(gamma) function in collagen-stimulated platelet activation. CONCLUSIONS: PPAR(gamma) agonists inhibit the activation of collagen-stimulation of platelet function through modulation of early GPVI signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disruption of the human immunolobulin E–high affinity receptor I (IgE–FcεRI) protein–protein interaction (PPI) is a validated strategy for the development of anti asthma therapeutics. Here, we describe the synthesis of an array of conformationally constrained cyclic peptides based on an epitope of the A–B loop within the Cε3 domain of IgE. The peptides contain various tolan (i.e., 1,2-biarylethyne) amino acids and their fully and partially hydrogenated congeners as conformational constraints. Modest antagonist activity (IC50 660 μM) is displayed by the peptide containing a 2,2′-tolan, which is the one predicted by molecular modeling to best mimic the conformation of the native A–B loop epitope in IgE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Increased food consumption following Δ9- tetrahydrocannabinol-induced cannabinoid type 1 receptor agonism is well documented. However, possible non-Δ9- tetrahydrocannabinol phytocannabinoid-induced feeding effects have yet to be fully investigated. Therefore, we have assessed the effects of the individual phytocannabinoids, cannabigerol, cannabidiol and cannabinol, upon feeding behaviors. Methods: Adult male rats were treated (p.o.) with cannabigerol, cannabidiol, cannabinol or cannabinol plus the CB1R antagonist, SR141716A. Prior to treatment, rats were satiated and food intake recorded following drug administration. Data were analyzed for hourly intake and meal microstructure. Results: Cannabinol induced a CB1R-mediated increase in appetitive behaviors via significant reductions in the latency to feed and increases in consummatory behaviors via increases in meal 1 size and duration. Cannabinol also significantly increased the intake during hour 1 and total chow consumed during the test. Conversely, cannabidiol significantly reduced total chow consumption over the test period. Cannabigerol administration induced no changes to feeding behavior. Conclusion: This is the first time cannabinol has been shown to increase feeding. Therefore, cannabinol could, in the future, provide an alternative to the currently used and psychotropic Δ9-tetrahydrocannabinol-based medicines since cannabinol is currently considered to be non-psychotropic. Furthermore, cannabidiol reduced food intake in line with some existing reports, supporting the need for further mechanistic and behavioral work examining possible anti-obesity effects of cannabidiol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS: We studied the role of protease-activated receptor 2 (PAR(2)) and its activating enzymes, trypsins and tryptase, in Clostridium difficile toxin A (TxA)-induced enteritis. METHODS: We injected TxA into ileal loops in PAR(2) or dipeptidyl peptidase I (DPPI) knockout mice or in wild-type mice pretreated with tryptase inhibitors (FUT-175 or MPI-0442352) or soybean trypsin inhibitor. We examined the effect of TxA on expression and activity of PAR(2) and trypsin IV messenger RNA in the ileum and cultured colonocytes. We injected activating peptide (AP), trypsins, tryptase, and p23 in wild-type mice, some pretreated with the neurokinin 1 receptor antagonist SR140333. RESULTS: TxA increased fluid secretion, myeloperoxidase activity in fluid and tissue, and histologic damage. PAR(2) deletion decreased TxA-induced ileitis, reduced luminal fluid secretion by 20%, decreased tissue and fluid myeloperoxidase by 50%, and diminished epithelial damage, edema, and neutrophil infiltration. DPPI deletion reduced secretion by 20% and fluid myeloperoxidase by 55%. In wild-type mice, FUT-175 or MPI-0442352 inhibited secretion by 24%-28% and tissue and fluid myeloperoxidase by 31%-71%. Soybean trypsin inhibitor reduced secretion to background levels and tissue myeloperoxidase by up to 50%. TxA increased expression of PAR(2) and trypsin IV in enterocytes and colonocytes and caused a 2-fold increase in Ca(2+) responses to PAR(2) AP. AP, tryptase, and trypsin isozymes (trypsin I/II, trypsin IV, p23) caused ileitis. SR140333 prevented AP-induced ileitis. CONCLUSIONS: PAR(2) and its activators are proinflammatory in TxA-induced enteritis. TxA stimulates existing PAR(2) and up-regulates PAR(2) and activating proteases, and PAR(2) causes inflammation by neurogenic mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mediators involved in the generation of symptoms in patients with irritable bowel syndrome (IBS) are poorly understood. Here we show that colonic biopsy samples from IBS patients release increased levels of proteolytic activity (arginine cleavage) compared to asymptomatic controls. This was dependent on the activation of NF-kappaB. In addition, increased proteolytic activity was measured in vivo, in colonic washes from IBS compared with control patients. Trypsin and tryptase expression and release were increased in colonic biopsies from IBS patients compared with control subjects. Biopsies from IBS patients (but not controls) released mediators that sensitized murine sensory neurons in culture. Sensitization was prevented by a serine protease inhibitor and was absent in neurons lacking functional protease-activated receptor-2 (PAR2). Supernatants from colonic biopsies of IBS patients, but not controls, also caused somatic and visceral hyperalgesia and allodynia in mice, when administered into the colon. These pronociceptive effects were inhibited by serine protease inhibitors and a PAR2 antagonist and were absent in PAR2-deficient mice. Our study establishes that proteases are released in IBS and that they can directly stimulate sensory neurons and generate hypersensitivity symptoms through the activation of PAR2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite being generally perceived as detrimental to the cardiovascular system, testosterone has marked beneficial vascular effects; most notably it acutely and directly causes vasodilatation. Indeed, men with hypotestosteronaemia can present with myocardial ischemia and angina which can be rapidly alleviated by infusion of testosterone. To date, however, in vitro studies have failed to provide a convincing mechanism to account for this clinically important effect. Here, using whole-cell patch-clamp recordings to measure current flow through recombinant human L-type Ca2+ channel alpha(1C) subunits (Ca(v)1.2), we demonstrate that testosterone inhibits such currents in a concentration-dependent manner. Importantly, this occurs over the physiological range of testosterone concentrations (IC50 34 nM), and is not mimicked by the metabolite 5alpha-androstan-17beta-ol-3-one (DHT), nor by progesterone or estradiol, even at high (10 microM) concentration. L-type Ca2+ channels in the vasculature are also important clinical targets for vasodilatory dihydropyridines. A single point mutation (T1007Y) almost completely abolishes nifedipine sensitivity in our recombinant expression system. Crucially, the same mutation renders the channels insensitive to testosterone. Our data strongly suggest, for the first time, the molecular requirements for testosterone binding to L-type Ca2+ channels, thereby supporting its beneficial role as an endogenous Ca2+ channel antagonist in the treatment of cardiovascular disease.