934 resultados para angiotensin converting enzyme polymorphism
Resumo:
IEECAS SKLLQG
Resumo:
A flow injection system for the determination of organophosphate and carbamate pesticides is described. A sensitive fluorescence probe was synthesized and used as the pH indicator to detect the inhibition of the enzyme acetylcholinesterase (ACNE). The percentage inhibition of enzyme activity is correlated to the pesticide concentration. Several parameters influencing the performance of the system are discussed. The detection limits of 3.5, 50, 12 and 25 mug/l for carbofuran, carbaryl, paraoxon and dichlorvos, in pure water, respectively were achieved with an incubation time of 10 min. A complete cycle of analysis, including incubation time, took 14 min. The detection system has been applied to the determination of carbofuran in spiked vegetable juices (Chinese cabbage and cole), achieving recovery values between 93.2 and 107% for Chinese cabbage juice and 108 and 118% for cole juice at the different concentration levels assayed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.
Resumo:
Mutation of hMLH1 gene plays an important role in human tumorigenesis. A highly sensitive single-strand conformation polymorphism (SSCP) method for detection of the T1151A mutation in exon 12 of the hMLH1 gene was for the first time developed employing laser-induced fluorescence capillary electrophoresis (LIF-CE). Effects of the concentration of linear polyacrylamide solution, running temperature, running voltage and the addition of glycerol on SSCP analysis were investigated, and the optimum separation conditions were defined. Thirty colorectal cancer patients and eight lung cancer patients were screened and the T1151A mutation was found in four of them. Based on CE-sequencing the mutation was further confirmed. To our knowledge, this is for the first time that the T1151A mutation is found in lung cancer. Our method is simple, rapid, and highly sensitive and is well suited to the analysis of large numbers of clinical samples.
Resumo:
Colorimetric assay based on the unique surface plasmon resonance properties of metallic nanoparticles has received considerable attention in bioassay due to its simplicity, high sensitivity, and low cost. Most of colorimetric methods previously reported employed gold nanoparticles (GNPs) as sensing elements. In this work, we develop a sensitive, selective, simple, and label-free colorimetric assay using unmodified silver nanoparticle (AgNP) probes to detect enzymatic reactions. Enzymatic reactions concerning adenosine triphosphate (ATP) dephosphorylation by calf intestine alkaline phosphatase (CLAP) and peptide phosphorylation by protein kinase A (PKA) were studied.
Resumo:
In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence Of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching.
Resumo:
An enzyme responsive nanoparticle system that uses a DNA-gold nanoparticle (AuNP) assembly as the substrate has been developed for the simple, sensitive, and universal monitoring of restriction endonucleases in real time. This new assay takes advantage of the palindromic recognition sequence of the restriction nucleases and the unique optical properties of AuNPs and is simpler than the procedure previously described by by Xu et al. (Angew. Chem. Int. Ed. Engl. 2007, 46, 3468-3470). Because it involves only one type of ssDNA modified AuNPs, this assay can be directed toward most of the endonucleases by simply changing the recognition sequence found within the linker DNA. In addition, the endonuclease activity could be quantitatively analyzed by the value of the reciprocal of hydrolysis half time (t(1/2)(-1). Furthermore, our new design could also be applied to the assay of methyltransferase activity since the methylation of DNA inhibits its cleavage by the corresponding restriction endonuclease, and thus, this new methodology can be easily adapted to high-throughput screening of methyltransferase inhibitors.