943 resultados para amperometric detection (L)-dopa


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application. © 2010 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA biosensors have gained increased attention over traditional diagnostic methods due to their fast and responsive operation and cost-effective design. The specificity of DNA biosensors relies on single-stranded oligonucleotide probes immobilized to a transduction platform. Here, we report the development of biosensors to detect the hippuricase gene (hipO) from Campylobacter jejuni using direct covalent coupling of thiol- and biotin-labeled single-stranded DNA (ssDNA) on both surface plasmon resonance (SPR) and diffraction optics technology (DOT, dotLab) transduction platforms. This is the first known report of the dotLab to detect targeted DNA. Application of 6-mercapto-1-hexanol as a spacer thiol for SPR gold surface created a self-assembled monolayer that removed unbound ssDNA and minimized non-specific detection. The detection limit of SPR sensors was shown to be 2.5 nM DNA while dotLab sensors demonstrated a slightly decreased detection limit of 5.0 nM (0.005 μM). It was possible to reuse the SPR sensor due to the negligible changes in sensor sensitivity (∼9.7 × 10 -7 ΔRU) and minimal damage to immobilized probes following use, whereas dotLab sensors could not be reused. Results indicated feasibility of optical biosensors for rapid and sensitive detection of the hipO gene of Campylobacter jejuni using specific ssDNA as a probe. © 2011 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper Pentacyanonitrosylferrate (NCuNP) nanoparticles were prepared in formamide solvent. The material was characterized by Infrared (FTIR), X-Ray Diffraction (XRD) and Ultraviolet-Visible (UV-Vis) Spectroscopy. The Cyclic Voltammogram (CV) the modified graphite paste electrode with NCuNP exhibits two redox couples with (Eθ,)1 = 0.29 and (E θ,)2 = 0.86 V attribute at Cu(I)/Cu (II) and Fe(II)(CN)5NO/Fe(III)(CN) 5NO processes, respectively (KCl = 1.0 mol L-1; v = 20 mV s-1). The redox couple with (Eθ,)2 presents an electrocatalytic response for sulfite. The modified graphite paste electrode gives a linear response of 7.0 × 10-4 to 3.0 × 10-2 mol L-1 (r = 0.998), for sulfite determination with Detection Limit (DL) of 1.76 × 10-3 mol L-1 and an amperometric sensitivity of 3.38 mA/mol L-1 and relative standard desviations ± 3% (n=3). ©The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The aim of this study was to compare cone beam CT (CBCT) in a small field of view (FOV) with a solid-state sensor and a photostimulable phosphor plate system for detection of cavitated approximal surfaces. Methods: 257 non-filled approximal surfaces from human permanent premolars and molars were recorded by two intraoral digital receptors, a storage phosphor plate (Digora Optime, Soredex) and a solid-state CMOS sensor (Digora Toto, Soredex), and scanned in a cone beam CT unit (3D Accuitomo FPD80, Morita) with a FOV of 4 cm and a voxel size of 0.08 mm. Image sections were carried out in the axial and mesiodistal tooth planes. Six observers recorded surface cavitation in all images. Validation of the true absence or presence of surface cavitation was performed by inspecting the surfaces under strong light with the naked eye. Differences in sensitivity, specificity and agreement were estimated by analysing the binary data in a generalized linear model using an identity link function. Results: A significantly higher sensitivity was obtained by all observers with CBCT (p,0.001), which was not compromised by a lower specificity. Therefore, a significantly higher overall agreement was obtained with CBCT (p,0.001). There were no significant differences between the Digora Optime phosphor plate system and the Digora Toto CMOS sensor for any parameter. Conclusions: CBCT was much more accurate in the detection of surface cavitation in approximal surfaces than intraoral receptors. The differences are interpreted as clinically significant. A CBCT examination performed for other reasons should also be assessed for approximal surface cavities in teeth without restorations. © 2013 The British Institute of Radiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sophisticated molecular architectures can be produced with the layer-by-layer (LbL) method, which may combine distinct materials on the same film. In this study, we take advantage of this capability to produce cholesterol amperometric biosensors from LbL films containing hemoglobin (Hb) and cholesterol oxidase in addition to the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(ethylene imine) (PEI). Following an optimization procedure, we found that an LbL film deposited onto ITO substrates, with the architecture ITO(PEI/Hb)5(PEI/COx)10, yielded a sensitivity of 93.4 μA μmol L-1 cm-2 for cholesterol incorporated into phospholipid liposomes, comparable to state-of-the-art biosensors. Hb acted as efficient electron mediator and did not suffer interference from phospholipids. Significantly, cholesterol could also be detected in real samples from chicken egg yolk, with no effects from potential interferents, including phospholipids. Taken together these results demonstrate the possible fabrication of low cost, easy-to-use cholesterol amperometric biosensors, whose sensitivity can be enhanced by further optimizing the molecular architectures of the LbL films. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inelastic scattering of light, Raman scattering, presents a very low cross section. However, the signal can be amplified by several orders of magnitude, leading to the so-called surface-enhanced Raman scattering (SERS) phenomenon. Basically, the SERS effect is achieved when the target molecule (analyte) is adsorbed onto metallic nanoparticles, usually noble metals. This article presents an overview of the applications of SERS to cancer diagnosis and the detection of pesticides, explosives, and drugs (illicit and pharmacological). SERS is routinely applied nowadays to detect and identify analytes at very low concentrations, including for single-molecule detection. However, the application of SERS as an analytical tool requires reliable and reproducible SERS substrates, in terms of enhancement factors, which depends on the size, shape, and aggregation of the metallic nanoparticles. Therefore, the production of reliable and reproducible SERS substrates is a challenge in the field. Besides, the metallic nanoparticles can also induce changes in the system by possible interactions with the analyte under investigation, which must be taken into account. This review will present work in which, under certain specific experimental conditions, SERS has been analytically applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and electrochemical characterization of hausmannite-type manganese oxide to use as a sensing material for sodium ion is described. This paper reports a new via synthetic to obtain of the hausmannite-type manganese oxide and its application in the construction of modified electrode as a voltammetric sensor. The electrochemical activity of hausmannite-type manganese oxide is controlled by intercalation/deintercalation of the sodium ions within the oxide lattice. The detection is based on the measurement of anodic current generated by oxidation of MnIII-MnIV at electrode surface. The best electrochemical response was obtained for a sensor composition of 20% (w/w) hausmannite oxide in the paste, a TRIS buffer solution of pH 6.0-7.0 and a scan rate of 50 mV s-1. A sensitive linear voltammetric response for sodium ions was obtained in the concentration range of 2.01 × 10 -5-2.09 × 10-4 mol L-1 with a slope of 355 μA L mmol-1 and a detection limit of 7.50 × 10 -6 mol L-1 using cyclic voltammetry. The use of hausmannite has significantly improved the selectivity of the sensor compared to the birnessite-type manganese oxide modified electrode. Under the working conditions, the proposed method was successfully applied to determination of sodium ions in urine samples. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) for determination of two important phosphodiesterase type-5 inhibitors (sildenafil and vardenafil) is introduced. The background electrolyte (BGE) consisted of an aqueous solution of 500 mmol L-1 acetic acid, and the capillary was previously treated with polybrene solution to prevent cationic analytes from adsorbing onto the inner surface. Although the analytes migrate in the counter flow, the total time is short. An instrument with two C4D detectors allowed a seamless transition from a fast method (less than one minute) but of low-efficiency using the first detector to a more efficient method using the second detector. The analysis of commercial tablets showed no significant difference between CE-C4D and HPLC methods. Conductivity detection is a well-known low selectivity detection scheme, which in conjunction with the high mobility of the co-ion in the BGE (hydroxonium) allows one to predict that other cationic analogues of sildenafil can also be detected. This is an interesting feature given the increasing number of compounds in this class. © 2013 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmon-enhanced spectroscopic techniques have expanded single-molecule detection (SMD) and are revolutionizing areas such as bio-imaging and single-cell manipulation. Surface-enhanced (resonance) Raman scattering (SERS or SERRS) combines high sensitivity with molecularfingerprint information at the single-molecule level. Spectra originating from single-molecule SERS experiments are rare events, which occur only if a single molecule is located in a hot-spot zone. In this spot, the molecule is selectively exposed to a significant enhancement associated with a high, local electromagnetic field in the plasmonic substrate. Here, we report an SMD study with an electrostatic approach in which a Langmuir film of a phospholipid with anionic polar head groups (PO 4 -) was doped with cationic methylene blue (MB), creating a homogeneous, two-dimensional distribution of dyes in the monolayer. The number of dyes in the probed area of the Langmuir-Blodgett (LB) film coating the Ag nanostructures established a regime in which single-molecule events were observed, with the identification based on direct matching of the observed spectrum at each point of the mapping with a reference spectrum for the MB molecule. In addition, advanced fitting techniques were tested with the data obtained from micro-Raman mapping, thus achieving real-time processing to extract the MB single-molecule spectra. © 2013 Society for Applied Spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel composite formed by interaction of a octa(3-chloropropyl)octasilsesquioxane modified with Purpald®, and its subsequent reaction with silver and hexacyanoferrate (III) (AgHSP), was synthesized and initially characterized by Fourier transform infrared spectra (FTIR) and cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with AgHSP, showed one redox couple with formal potential Eθ'=0.64V (vs Ag/AgCl, KNO3, 1.0 mol L-1; v = 20 mV s-1), attributed to the Fe2+(CN)6/ Fe3+(CN)6 process. The redox couple presents an electrocatalytic response for determination of sulfite. The modified electrode showed a linear response from 7.0×10-5 to 1.0×10-3 mol L-1 with the corresponding equation Y(μA) = 18.05 + 29.983×103 [sulfite], and a correlation coefficient of r=0.999. The method showed a detection limit of 0.115×10-4 mol L-1 with a relative standard deviation of ± 4% (n = 3) and amperometric sensitivity of 29.983×10-3A mol L-1. The modified electrode showed a excellent stability and good reproducibility during experiments. © 2013 by ESG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)