863 resultados para alternative isoform
Resumo:
The project was developed into three parts: the analysis of p63 isoform in breast tumours; the study of intra-tumour eterogeneicity in metaplastic breast carcinoma; the analysis of oncocytic breast carcinoma. p63 is a sequence-specific DNA-binding factor, homologue of the tumour suppressor and transcription factor p53. The human p63 gene is composed of 15 exons and transcription can occur from two distinct promoters: the transactivating isoforms (TAp63) are generated by a promoter upstream of exon 1, while the alternative promoter located in intron 3 leads to the expression of N-terminal truncated isoforms (ΔNp63). It has been demonstrated that anti-p63 antibodies decorate the majority of squamous cell carcinomas of different organs; moreover tumours with myoepithelial differentiation of the breast show nuclear p63 expression. Two new isoforms have been described with the same sequence as TAp63 and ΔNp63 but lacking exon 4: d4TAp63 and ΔNp73L, respectively. Purpose of the study was to investigate the molecular expression of N-terminal p63 isoforms in benign and malignant breast tissues. In the present study 40 specimens from normal breast, benign lesions, DIN/DCIS, and invasive carcinomas were analyzed by immunohistochemistry and RT-PCR (Reverse Transcriptase-PCR) in order to disclose the patterns of p63 expression. We have observed that the full-length isoforms can be detected in non neoplastic and neoplastic lesions, while the short isoforms are only present in the neoplastic cells of invasive carcinomas. Metaplastic carcinomas of the breast are a heterogeneous group of neoplasms which exhibit varied patterns of metaplasia and differentiation. The existence of such non-modal populations harbouring distinct genetic aberrations may explain the phenotypic diversity observed within a given tumour. Intra-tumour morphological heterogeneity is not uncommon in breast cancer and it can often be appreciated in metaplastic breast carcinomas. Aim of this study was to determine the existence of intra-tumour genetic heterogeneity in metaplastic breast cancers and whether areas with distinct morphological features in a given tumour might be underpinned by distinct patterns of genetic aberrations. 47 cases of metaplastic breast carcinomas were retrieved. Out of the 47 cases, 9 had areas that were of sufficient dimensions to be independently microdissected. Our results indicate that at least some breast cancers are composed of multiple non-modal populations of clonally related cells and provide direct evidence that at least some types of metaplastic breast cancers are composed of multiple non-modal clones harbouring distinct genetic aberrations. Oncocytic tumours represent a distinctive set of lesions with typical granular cytoplasmatic eosinophilia of the neoplastic cells. Only rare example of breast oncocytic carcinomas have been reported in literature and the incidence is probably underestimated. In this study we have analysed 33 cases of oncocytic invasive breast carcinoma of the breast, selected according to morphological and immunohistochemical criteria. These tumours were morphologically classified and studied by immunohistochemistry and aCGH. We have concluded that oncocytic breast carcinoma is a morphologic entity with distinctive ultrastructural and histological features; immunohistochemically is characterized by a luminal profile, it has a frequency of 19.8%, has not distinctive clinical features and, at molecular level, shows a specific constellation of genetic aberration.
Resumo:
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
Resumo:
La scarsità di informazioni sulle reazioni che intervengono nel processo di stiratura semipermanente dei capelli e la necessità di trovare prodotti alternativi all’uso della formaldeide ha portato a intraprendere questo lavoro di tesi. Esso si è svolto seguendo due linee principali: l’indagine sui possibili meccanismi di reazione che intervengono fra composti aventi gruppi aldeidici, quali formaldeide o acido gliossilico (particolarmente efficaci nel processo di stiratura), e alcuni amminoacidi presenti nei capelli da un lato, e uno studio sulle modificazioni che intervengono nella fibra attraverso spettroscopia Raman e ATR-FT-IR e microscopia elettronica a scansione (SEM) dall’altro. Partendo dall’ipotesi più plausibile di una addizione sull’atomo di carbonio carbonilico da parte di nucleofili presenti su alcuni residui amminoacidici della catena polipeptidica, sono stati presi in considerazioni tre gruppi funzionali presenti sugli amminoacidi che possono dar luogo ad addizione reversibile al carbonio carbonilico: il gruppo tiolico che comportandosi come nucleofilo allo zolfo potrebbe dare formazione di semitioacetali, il gruppo ossidrilico di amminoacidi come serina e treonina che potrebbe dare semiacetali, ed il gruppo amminico di amminoacidi basici che agendo da nucleofilo all’azoto potrebbe generare immine. Dopo aver indagato sulla reazione fra aldeide formica (o acido gliossilico) con cisteina e derivati, l’indagine è proseguita utilizzando come amminoacido basico modello N-acetil-L-lisina, dove il gruppo amminico in posizione alfa al carbossile è protetto per cercare di mimare la situazione nel polipeptide. Alcune prove sono state condotte facendo reagire questo substrato sia con una serie di aldeidi aromatiche in diverse condizioni sperimentali che con acido gliossilico. In seguito sono state svolte analisi mediante spettroscopia Raman e ATR-FT-IR su ciocche di pelo di yak nelle diverse fasi del trattamento più comunemente utilizzato nella stiratura semipermanente. Questo ha permesso di ottenere indicazioni sia sulle modificazioni della struttura secondaria subite dalla fibra che sul verificarsi di reazioni fra agente lisciante e residui amminoacidici presenti su di essa. Infine è stata svolta un’indagine SEM sia su fibre di yak che su capelli umani ricci per osservare le variazioni superficiali nei diversi stadi del trattamento.
Resumo:
In the last decades, the building materials and construction industry has been contributing to a great extent to generate a high impact on our environment. As it has been considered one of the key areas in which to operate to significantly reduce our footprint on environment, there has been widespread belief that particular attention now has to be paid and specific measures have to be taken to limit the use of non-renewable resources.The aim of this thesis is therefore to study and evaluate sustainable alternatives to commonly used building materials, mainly based on ordinary Portland Cement, and find a supportable path to reduce CO2 emissions and promote the re-use of waste materials. More specifically, this research explores different solutions for replacing cementitious binders in distinct application fields, particularly where special and more restricting requirements are needed, such as restoration and conservation of architectural heritage. Emphasis was thus placed on aspects and implications more closely related to the concept of non-invasivity and environmental sustainability. A first part of the research was addressed to the study and development of sustainable inorganic matrices, based on lime putty, for the pre-impregnation and on-site binding of continuous carbon fiber fabrics for structural rehabilitation and heritage restoration. Moreover, with the aim to further limit the exploitation of non-renewable resources, the synthesis of chemically activated silico-aluminate materials, as metakaolin, ladle slag or fly ash, was thus successfully achieved. New sustainable binders were hence proposed as novel building materials, suitable to be used as primary component for construction and repair mortars, as bulk materials in high-temperature applications or as matrices for high-toughness fiber reinforced composites.
Resumo:
The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.
Resumo:
Dystrophin is a subsarcolemmal protein critical for the integrity of muscle fibers by linking the actin cytoskeleton to the extracellular matrix via the dystroglycan complex. It is reported that dystroglycans are also localized in the skin, at dermal-epidermal junction. Here we show that epidermal melanocytes express dystrophin at the interface with the basement membrane. The full-length muscle isoform mDp427 was clearly detectable in epidermis and in melanocyte cultures as assessed by RNA and western blot analysis. Dystrophin was absent in Duchenne Muscular Dystrophy (DMD) patients melanocytes, and the ultrastructural analysis revealed mitochondrial alterations, similar to those occurring in myoblasts from the same patients. Interestingly, mitochondrial dysfunction of DMD melanocytes reflected the alterations identified in dystrophin-deficient muscle cells. In fact, mitochondria of melanocytes from DMD patients accumulated tetramethylrhodamine methyl ester but, on the contrary of control donor, mitochondria of DMD patients readily depolarized upon the addition of oligomycin, suggesting either that they are maintaining the membrane potential at the expense of glycolytic ATP, or that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Melanocyte cultures can be easily obtained by conventional skin biopsies, less invasive procedure than muscular biopsy, so that they may represent an alternative cellular model to myoblast for studying and monitoring dystrophinopathies also in response to pharmacological treatments.
Resumo:
In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.
Resumo:
La dissertazione ha riguardato l’analisi di sostenibilità di un sistema agronomico per la produzione di olio vegetale a fini energetici in terreni resi marginali dall’infestazione di nematodi. Il processo indagato ha previsto il sovescio di una coltura con proprietà biofumiganti (brassicacea) coltivata in precessione alla specie oleosa (soia e tabacco) al fine di contrastare il proliferare dell’infestazione nel terreno. Tale sistema agronomico è stato confrontato attraverso una analisi di ciclo di vita (LCA) ad uno scenario di coltivazione della stessa specie oleosa senza precessione di brassica ma con l’utilizzo di 1-3-dicloropropene come sistema di lotta ai nematodi. Allo scopo di completare l’analisi LCA con una valutazione dell’impatto sull’uso del suolo (Land use Impact) generato dai due scenari a confronto, sono stati costruiti due modelli nel software per il calcolo del Soil Conditioning Index (SCI), un indicatore quali-quantitativo della qualità del terreno definito dal Dipartimento per l’Agricoltura degli Stati Uniti d’America (USDA).
Resumo:
La green chemistry può essere definita come l’applicazione dei principi fondamentali di sviluppo sostenibile, al fine di ridurre al minimo l’impiego o la formazione di sostanze pericolose nella progettazione, produzione e applicazione di prodotti chimici. È in questo contesto che si inserisce la metodologia LCA (Life Cycle Assessment), come strumento di analisi e di valutazione. Il presente lavoro di tesi è stato condotto con l’intenzione di offrire una valutazione degli impatti ambientali associati al settore dei processi chimici di interesse industriale in una prospettiva di ciclo di vita. In particolare, è stato studiato il processo di produzione di acroleina ponendo a confronto due vie di sintesi alternative: la via tradizionale che impiega propilene come materia prima, e l’alternativa da glicerolo ottenuto come sottoprodotto rinnovabile di processi industriali. Il lavoro si articola in due livelli di studio: un primo, parziale, in cui si va ad esaminare esclusivamente il processo di produzione di acroleina, non considerando gli stadi a monte per l’ottenimento delle materie prime di partenza; un secondo, più dettagliato, in cui i confini di sistema vengono ampliati all’intero ciclo produttivo. I risultati sono stati confrontati ed interpretati attraverso tre tipologie di analisi: Valutazione del danno, Analisi di contributo ed Analisi di incertezza. Dal confronto tra i due scenari parziali di produzione di acroleina, emerge come il processo da glicerolo abbia impatti globalmente maggiori rispetto al tradizionale. Tale andamento è ascrivibile ai diversi consumi energetici ed in massa del processo per l’ottenimento dell’acroleina. Successivamente, per avere una visione completa di ciascuno scenario, l’analisi è stata estesa includendo le fasi a monte di produzione delle due materie prime. Da tale confronto emerge come lo scenario più impattante risulta essere quello di produzione di acroleina partendo da glicerolo ottenuto dalla trans-esterificazione di olio di colza. Al contrario, lo scenario che impiega glicerolo prodotto come scarto della lavorazione di sego sembra essere il modello con i maggiori vantaggi ambientali. Con l’obiettivo di individuare le fasi di processo maggiormente incidenti sul carico totale e quindi sulle varie categorie d’impatto intermedie, è stata eseguita un’analisi di contributo suddividendo ciascuno scenario nei sotto-processi che lo compongono. È stata infine eseguita un’analisi di incertezza tramite il metodo Monte Carlo, verificando la riproducibilità dei risultati.
Resumo:
This thesis is primarily based on three core chapters, focused on the fundamental issues of trade secrets law. The goal of this thesis is to come up with policy recommendations to improve legal structure governing trade secrets. The focal points of this research are the following. What is the optimal scope of trade secrets law? How does it depend on the market characteristics such as degree of product differentiation between competing products? What factors need to be considered to balance the contradicting objectives of promoting innovation and knowledge diffusion? The second strand of this research focuses on the desirability of lost profits or unjust enrichment damage regimes in case of misappropriation of a trade secret. A comparison between these regimes is made and simple policy implications are extracted from the analysis. The last part of this research is an empirical analysis of a possible relationship between trade secrets sharing and misappropriation instances faced by firms.
Resumo:
Globine sind kleine globuläre Proteine mit nahezu ubiquitärem Vorkommen in allen Tiergruppen. Sie weisen eine typische Sandwichstruktur auf, die in der Regel aus acht α-Helices mit einer zentralen prosthetischen Häm-Gruppe besteht und die Proteine zur Bindung gasförmiger Liganden befähigt. Die Funktionen der Globine reichen von O2-Transport und – Speicherung, über eine Beteiligung bei der Entgiftung reaktiver Sauerstoff- und Stickstoffspezies bis hin zu sensorischen physiologischen Aufgaben. Innerhalb der Klasse der Insekten schien das Vorhandensein von Globinen zunächst auf Insekten mit offensichtlich hypoxischen Habitaten beschränkt zu sein. Die Entdeckung des Globins glob1 in Drosophila melanogaster deutete jedoch eine sehr viel weitere Verbreitung der Globine in Insekten an, die sich durch die Identifizierung von Globingenen in einer Vielzahl von normoxisch lebenden Insekten, wie z.B. Apis mellifera oder Aedes aegypti bestätigte. D. melanogaster besitzt drei Globine, glob1, glob2 und glob3. Glob1 ist eng mit anderen intrazellulären Insektenglobinen verwandt, was zu der Annahme führte, dass es sich bei glob1 um das ursprüngliche und bei glob2 und glob3 um abgeleitete D. melanogaster Globine handelt. Glob1 wird in allen Entwicklungsstadien exprimiert, wobei die Hauptexpressionsorte der Fettkörper und das Tracheensystem sind. Die Transkription des glob1 startet von zwei alternativen Promotoren (Promotor I und II), wodurch in Kombination mit alternativem Splicing vier Transkriptvarianten (Isoform A-D) entstehen, deren Translation jedoch in einer Proteinvariante (glob1) resultiert. Hypoxische Bedingungen führen zu einer vermutlich HIF (=‚hypoxia-inducible factor‘) -vermittelten Abnahme der glob1 Genexpression, wohingegen Hyperoxie eine leichte Zunahme der glob1 mRNA Menge bewirkt. Der mithilfe des UAS/Gal4- Systems erzeugte, RNAi-vermittelte glob1 Knockdown führt zu einer schlechteren Überlebensrate adulter Fliegen unter hypoxischen Bedingungen, einer verkürzten Erholungszeit nach hypoxischem Stupor in Weibchen sowie zu einer erhöhten Resistenz gegenüber dem ROS (=‘reactive oxygen species‘) -generierenden Herbizid Paraquat in Larven und adulten Weibchen. Diese Beobachtungen sprechen für eine Funktion des Drosophila glob1 innerhalb der O2-Versorgung. Unter hyperoxischen Bedingungen hingegen wurde kein Unterschied zwischen Fliegen mit wildtypischer und manipulierter glob1-Expression festgestellt, wodurch eine Beteiligung des glob1 bei der Entgiftung reaktiver Sauerstoffspezies als mögliche Funktion vorerst ausscheidet. Bei glob2 und glob3 handelt es sich um duplizierte Gene. Auf phylogenetischen Rekonstruktionen basierend konnte die Entstehung der Globin-Duplikate auf ein Duplikationsereignis vor der Radiation des Subgenus Sophophora vor mindestens 40 Millionen Jahren zurückgeführt werden. Die durchgeführten Analysen zur molekularen Sequenzevolution der Globin-Duplikate deuten darauf hin, dass glob2 und glob3 nach der Duplikation eine Kombination aus Sub- und Neo-Funktionalisierungsprozessen durchlaufen haben. Glob2 und glob3 zeigen eine deckungsgleiche mRNA Expression, die auf die männliche Keimbahn beschränkt ist. Aufgrund des hohen Konservierungsgrads der für die Häm- und O2-Bindung essentiellen Aminosäuren kann von der Funktionalität beider Proteine ausgegangen werden. Die streng auf die männliche Keimbahn begrenzte Expression von glob2 und glob3 deutet auf eine Rolle der Globin-Duplikate innerhalb der Spermatogenese hin, die möglicherweise in einem Schutz der Spermatogenese vor oxidativem Stress besteht. Auch eine Beteiligung beim korrekten Ablauf der Spermien-Individualisierung, beispielsweise durch Regulation von Apoptoseprozessen wäre denkbar.
Resumo:
Inbreeding can lead to a fitness reduction due to the unmasking of deleterious recessive alleles and the loss of heterosis. Therefore, most sexually reproducing organisms avoid inbreeding, often by disperal. Besides the avoidance of inbreeding, dispersal lowers intraspecific competition on a local scale and leads to a spreading of genotypes into new habitats. In social insects, winged reproductives disperse and mate during nuptial flights. Therafter, queens independently found a new colony. However, some species also produce wingless sexuals as an alternative reproductive tactic. Wingless sexuals mate within or close to their colony and queens either stay in the nest or they found a new colony by budding. During this dependent colony foundation, wingless queens are accompanied by a fraction of nestmate workers. The production of wingless reproductives therefore circumvents the risks associated with dispersal and independent colony foundation. However, the absence of dispersal can lead to inbreeding and local competition.rnIn my PhD-project, I investigated the mating biology of Hypoponera opacior, an ant that produces winged and wingless reproductives in a population in Arizona. Besides the investigation of the annual reproductive cycle, I particularly focused on the consequences of wingless reproduction. An analysis of sex ratios in wingless sexuals should reveal the relative importance of local resource competition among queens (that mainly compete for the help of workers) and local mate competition among males. Further, sexual selection was expected to act on wingless males that were previously found to mate with and mate-guard pupal queens in response to local mate competition. We studied whether males are able to adapt their mating behaviour to the current competitive situation in the nest and which traits are under selection in this mating situation. Last, we investigated the extent and effects of inbreeding. As the species appeared to produce non-dispersive males and queens quite frequently, we assumed to find no or only weak negative effects of inbreeding and potentially mechanisms that moderate inbreeding levels despite frequent nest-matings.rnWe found that winged and wingless males and queens are produced during two separate seasons of the year. Winged sexuals emerge in early summer and conduct nuptial flights in July, when climate conditions due to frequent rainfalls lower the risks of dispersal and independent colony foundation. In fall, wingless sexuals are produced that reproduce within the colonies leading to an expansion on the local scale. The absence of dispersal during this second reproductive season resulted in a local genetic population viscosity and high levels of inbreeding within the colonies. Male-biased sex ratios in fall indicated a greater importance of local resource competition among queens than local mate competition among males. Males were observed to adjust mate-guarding durations to the competitive situation (i.e. the number of competing males and pupae) in the nest, an adaptation that helps maximising their reproductive success. Further, sexual selection was found to act on the timing of emergence as well as on body size in these males, i.e. earlier emerging and larger males show a higher mating success. Genetic analyses revealed that wingless males do not actively avoid inbreeding by choosing less related queens as mating partners. Further, we detected diploid males, a male type that is produced instead of diploid females if close relatives mate. In contrast to many other Hymenopteran species, diploid males were here viable and able to sire sterile triploid offspring. They did not differ in lifespan, body size and mating success from “normal” haploid males. Hence, diploid male production in H. opacior is less costly than in other social Hymenopteran species. No evidence of inbreeding depression was found on the colony level but more inbred colonies invested more resources into the production of sexuals. This effect was more pronounced in the dispersive summer generation. The increased investment in outbreeding sexuals can be regarded as an active strategy to moderate the extent and effects of inbreeding. rnIn summary, my thesis describes an ant species that has evolved alternative reproductive tactics as an adaptation to seasonal environmental variations. Hereby, the species is able to maintain its adaptive mating system without suffering from negative effects due to the absence of dispersal flights in fall.rn
Resumo:
Mutations in OPA1 gene have been identified in the majority of patients with Dominant Optic Atrophy (DOA), a blinding disease, and the syndromic form DOA-plus. OPA1 protein is a mitochondrial GTPase involved in various mitochondrial functions, present in humans in eight isoforms, resulting from alternative splicing and proteolytic processing. In this study we have investigated the specific role of each isoform through expression in OPA-/- MEFs, by evaluating their ability to improve the defective mitochondrial phenotypes. All isoforms were able to rescue the energetic efficiency, mitochondrial DNA (mtDNA) content and cristae integrity, but only the presence of both long and short forms could recover the mitochondrial morphology. In order to identify the OPA1 protein domains crucial for its functions, we selected and modified the isoform 1, shown to be one of the most efficient in preserving mitochondrial phenotype, to express three specific OPA1 variants, namely: one with a different N-terminus portion, one unable to generate short form owing to deletion of S1 cleavage site and one with a defective GTPase domain. We demonstrated that the simultaneous presence of the N- and C-terminus of OPA1 was essential for the mtDNA maintenance; a cleavable isoform generating s-forms was necessary to completely rescue the energetic competence and the presence of the C-terminus was sufficient to partially recover the cristae ultrastructure. Lastly, several pathogenic OPA1 mutations were inserted in MEF clones and the biochemical features investigated, to correlate the defective phenotypes with the clinical severity of patients. Our results clearly indicate that this cell model reflects very well the clinical characteristics of the patients, and therefore can be proposed as an useful tool to shed light on the pathomechanism underlying DOA.
Resumo:
How to evaluate the cost-effectiveness of repair/retrofit intervention vs. demolition/replacement and what level of shaking intensity can the chosen repairing/retrofit technique sustain are open questions affecting either the pre-earthquake prevention, the post-earthquake emergency and the reconstruction phases. The (mis)conception that the cost of retrofit interventions would increase linearly with the achieved seismic performance (%NBS) often discourages stakeholders to consider repair/retrofit options in a post-earthquake damage situation. Similarly, in a pre-earthquake phase, the minimum (by-law) level of %NBS might be targeted, leading in some cases to no-action. Furthermore, the performance measure enforcing owners to take action, the %NBS, is generally evaluated deterministically. Not directly reflecting epistemic and aleatory uncertainties, the assessment can result in misleading confidence on the expected performance. The present study aims at contributing to the delicate decision-making process of repair/retrofit vs. demolition/replacement, by developing a framework to assist stakeholders with the evaluation of the effects in terms of long-term losses and benefits of an increment in their initial investment (targeted retrofit level) and highlighting the uncertainties hidden behind a deterministic approach. For a pre-1970 case study building, different retrofit solutions are considered, targeting different levels of %NBS, and the actual probability of reaching Collapse when considering a suite of ground-motions is evaluated, providing a correlation between %NBS and Risk. Both a simplified and a probabilistic loss modelling are then undertaken to study the relationship between %NBS and expected direct and indirect losses.