937 resultados para algal
Resumo:
Microhabitat and plant structure of seven Batrachospermum populations (four of Batrachospermum delicatulum (= Sirodotia delicatula), one of Batrachospermum macrosporum and two of the 'Chantransia' stage), including the influence of physical variables (current velocity, depth, irradiance and substratum), were investigated in four streams of São Paulo State, southeastern Brazil. The populations of B. delicatulum and the 'Chantransia' stage occurred under very diverse microhabitat conditions, which probably contributes to their wide spatial and seasonal distribution in Brazilian streams. Results suggest branch reconfiguration as a probable mechanism of adaptation to current velocity based on the occurrence of: (i) B. macrosporum (a large mucilaginous form with presumably little ability for branch reconfiguration) under lower current velocity than B. delicatulum; (ii) only dense plants in populations with high current velocities (> 60 cm s-1), whereas 53-77% of dense plants were seen in populations exposed to lower currents (< 40 cm s-1); (iii) positive correlations of plant length with internode length in populations under low current velocities and negative correlation in a population with high velocity (132 cm s-1); and (iv) negative correlations of current velocity with plant diameter and internode length in a population under high flow. This study, involving mainly dioecious populations, revealed that B. delicatulum displayed higher fertilization rates than B. macrosporum. A complementary explanation for a dioecious species to increase fertilization success was proposed consisting of outcrossing among intermingled male and female adjacent plants within an algal spot.
Resumo:
The seasonal dynamics of a dioecious population of Batrachospermum delicatulum (Skuja) Necchi and Entwisle was evaluated biweekly during the growth period of the macroscopic gametophyte, from late autumn (May) to early spring (October) in a third-order stream from the northeast region of Sao Paulo State, southeastern Brazil (20°43'S, 49°13'W). The population fluctuated throughout the study period in terms of percentage cover, frequency and chlorophyll content. Percent cover and frequency showed a clear pattern with the lowest values at the initial and final stages of the growth period and the highest in July-August (winter). Gametophyte growth was associated with high illumination and low temperature, which agrees with most observations on Batrachospermales in stream environments. Relatively wide variations in reproductive characteristics were observed during the growth period, which were not correlated with percentage cover, frequency and chlorophyll content. The phenologic pattern observed in this population was characterized by a synchronic development of female/male plant ratio with the number of spermatangia per plant resulting in. (i) a higher proportion of fertilized (carposporophytic) plants associated with more male plants; (ii) higher fertilization rates during the periods with higher production of spermatangia per plant; and (iii) higher production of spermatangia per plant when the population had more male plants. These characteristics were largely associated with water temperature and ion content. In terms of reproductive success, the population studied can be regarded as highly efficient, considering the relatively low proportion of male to female plants and high fertilization rates. These data are consistent with a hypothesis to explain high fertilization rates in dioecious species in lotic habitats consisting of outcrossing among adjacent plants with intermingled male and female branches within an algal cluster. Efficient reproductive strategies have been reported in dioecious, monoecious and even mixed populations of B. delicatulum and can be interpreted as adaptations to successfully colonize streams with different characteristics.
Resumo:
The genetic and morphological variability among 15 Brazilian strains of Microcystis aeruginosa (Kütz.) Kütz. collected from four locations was examined and compared with several reference strains of M. aeruginosa, M. viridis (A. Br.) Lemm. and M. wesenbergii (Kom.) Kom. in Kondr. Brazilian strains were classified by morphological features and by comparison of the nucleotide sequences of the cpcBA intergenic spacer and flanking regions. Our results indicate that Brazilian strains classified as M. aeruginosa are phylogenetically diverse compared with reference strains of M. aeruginosa and that the current taxonomy underestimates genetic diversity within M. aeruginosa. The data also demonstrate that morphological criteria alone are inadequate to characterize Microcystis species. Although colonial characters were shown to vary considerably in culture, some genetic lineages demonstrated consistent cellular diameter ranges, indicating that cell size has value as a taxonomic character. The detection of six M. aeruginosa genotypes in a single water body indicates that morphological approaches can also seriously underestimate the diversity of Microcystis bloom populations.
Resumo:
Responses of net photosynthetic rates to temperature, irradiance, pH/inorganic carbon and diurnal rhythm were analyzed in 15 populations of eight freshwater red algal species in culture and natural conditions. Photosynthetic rates were determined by oxygen concentration using the light and dark bottles technique. Parameters derived from the photosynthesis-irradiance curves indicated adaptation to low irradiance for all freshwater red algae tested, confirming that they tend to occur under low light regimes. Some degree of photoinhibition (β = -0.33-0.01 mg O2 g-1 DW h-1 (μmol photons m-2 s-1)-1) was found for all species/populations analyzed, whereas light compensation points (lc) were very low (≤ 2 μmol photons m- photons s-1) for most algae tested. Saturation points were low for all algae tested (lk = 6-54 μmol photons m-2 S-1; lS = 20-170 μmol photons m-2 s-1). Rates of net photosynthesis and dark respiration responded to the variation in temperature. Optimum temperature values for net photosynthesis were variable among species and populations so that best performances were observed under distinct temperature conditions (10, 15, 20 or 25°C). Rates of dark respiration exhibited an increasing trend with temperature, with highest values under 20-25°C. Results from pH experiments showed best photosynthetic performances under pH 8.5 or 6.5 for all but one species, indicating higher affinity for inorganic carbon as bicarbonate or indistinct use of bicarbonate and free carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for all algae tested, which was characterized by two relatively clear peaks, with some variations around it: a first (higher) during the morning (07.00-11.00 hours.) and a second (lower) in the afternoon (14.00-18.00 hours). Comparative data between the 'Chantransia' stage and the respective gametophyte for one Batrachospermum population revealed higher values (ca 2-times) in the latter, much lower than previously reported. The physiological role of the 'Chantransia' stage needs to be better analyzed.
Resumo:
Seven populations (six in culture and one sampled directly from nature) of the freshwater red algal families Batrachospermaceae, Lemaneaceae and Thoreaceae were examined, involving three species of Batrachospermum, two of Paralemanea and one of Thorea. All 'Chantransia' stages ultimately produced juvenile gametophytes. The production of juvenile gametophytes in the three populations of Batrachospermum was generally most abundant at 15°C and low irradiances (47-68 μmol photons m-2 s-1). The most abundant gametophyte development in the Paralemanea species was observed at 10°C and low or high irradiances (47-142 μmol photons m-2 s-1). Gametophyte production in Thoreaceae occurred at higher temperatures (20°C) and also at low irradiances. In species of the Batrachospermaceae and Lemaneaceae, the 'elimination cells' can be situated on the basal or suprabasal cell of the juvenile gametophyte, but the position is usually fixed in individual species. The presence and position of the elimination cells remain to be established in Thoreaceae. Our results corroborate a previous study suggesting that the position of elimination cells is such a constant feature that it is of potential diagnostic value at the generic or infrageneric (sectional or specific) level. The characteristics observed in the development of the juvenile gametophytes in species of Batrachospermaceae and Lemaneaceae essentially agreed with general descriptions in the previous studies. The characteristics of the Thoreaceae, with a distinctive developmental pattern of the juvenile gametophyte and the occurrence of two morphological types in the 'Chantransia' stage, support the proposal to elevate it to the ordinal level. Two remarkable observations in Batrachospermum species were the production of numerous juvenile gametophytes from filaments of the same plant of the 'Chantransia' stage and the formation of a system of rhizoidal filaments or cell agglomeration of the juvenile gametophytes, which produced new gametophytes. These two characteristics potentially increase the formation of additional gametophytes under favourable conditions.
Resumo:
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Background. An interaction between lectins from marine algae and PLA 2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA 2 isolated from rattlesnake venom (Crotalus durissus cascavella), to better understand the enzymatic and pharmacological mechanisms of the PLA 2 and its complex. Results. This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity. The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24-26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap). PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm. PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA 2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound. Conclusion. The unexpected results observed for the PLA2-BTL-2 complex strongly suggest that the pharmacological activity of this PLA2 is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules. © 2008 Oliveira et al; licensee BioMed Central Ltd.
Resumo:
A laboratory culture of Ankistrodesmus gracilis algae was evaluated by studying the biology of the species and its chemical composition in a traditional medium (CHU 12) and in two alternative culture media, NPK (20-5-20) and macrophyte (Eichhornia crassipes) + NPK, in three different types of recipients (fiberglass, carboy and plastic bag). First peak in the growth curve of Ankistrodesmus gracilis occurred on the ninth day in macrophyte + NPK medium (74.16 x 10 5 cells mL -1) in a fiberglass recipient. However, highest density (p < 0.01) was reported in medium CHU 12 (122.87 x 10 5 cells mL -1) in a plastic bag on the twelfth day. Cell density was over 70 x 10 5 cells mL -1 starting on the twelfth day. Growth rate of A. gracilis was similar (p > 0.05) in culture media in the three recipients. Protein and fiber were similar (p > 0.05) in the treatments, but lipids were higher (p < 0.05) in NPK. Nitrate, ammonia, total phosphorus and orthophosphate contents were over 1 mg L -1 in NPK (p < 0.01). Results show that alternative media, such as NPK and macrophyte + NPK, are possible for large-scale culture of A. gracilis cultured in three types of recipients. Costs are low, occupying less space when cultured in plastic bags and in the laboratory.
Resumo:
Oceanic disposal systems of domestic sewage, or submarine sewage outfalls, have been historically used around the world as a solution for urban effluents, in special due to economic aspects. However, release into the ocean, in shallow or deep waters, may induce a set of negative environmental impacts, as eutrophication, toxic algal blooms, pathogenic microorganisms introduction and contamination by chemical substances which are capable of causing toxic effects to the biota and bioaccumulation. Thus, the release of untreated sewage into the sea does not constitute an adequate environmental practice; then, urban effluents should be treated in order to remove nutrients, contaminants and pathogenic organisms and avoid environmental degradation.
Resumo:
New material collected in Albian and Cenomanian strata from Brazil helps us to better understand the structure of a poorly known dasycladacean alga, Holosporella nkossaensis P. Masse, in Bull Centr Rech Explor-Prod elf aquitaine, 19: 301-317, 1995: each of its fertile laterals, which are regularly arranged in verticils along the cylindrical algal thallus, consists of a distally inXated primary bearing two vesicular ampullae in terminal position. These traits are not known in representatives of the genus Holosporella Pia, 1930 nor in any genera described to date. On this basis, we introduce the new genus Brasiliporella with Brasiliporella nkossaensis emend. nov. comb. as its typespecies. We also discuss the systematic aYnity of the new taxon: it is ascribed to the Tribe Batophoreae, and in a broader manner the current paleontological 'interpretation of the concept' (in French: 'acception') of the Order Dasycladales, with the creation of two new families and accordingly with the emendation of two other families. © Springer-Verlag Berlin Heidelberg 2012.
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC