945 resultados para accumulation excessive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 95% of the carbon lost from the "blue-ocean" reservoir to the sedimentary sink appears to be transferred as skeletal CaCO3, produced in the surface waters. This skeletal CaCO3 carries a productivity signal which is much better preserved in the underlying pelagic carbonate sediments than that of the refractory organic carbon accompanying it. Here, we develop a new method to quantify this signal in terms of organic carbon paleoproductivity, using the sedimentary mass accumulation rates of pelagic carbonate. These are converted into carbonate transit-paleofluxes, which are then translated into the corresponding transit-fluxes of organic carbon, via the carbonate to organic carbon ratios reported from deep-moored sediment trap experiments in modern blue-ocean environments. Paleoproductivity can then be estimated quantitatively by using published algorithms describing the relationship between the export production of particulate organic carbon at depth and primary productivity in the euphotic zone. Although our approach seems rather straightforward, it contains several pitfalls, the effects of which are highlighted by an example comprising three Paleocene/Oligocene to Recent pelagic carbonate sequences drilled during ODP Leg 121 in the eastern Indian Ocean. Although some extreme values are likely due to errors, such as poorly constrained datum levels and dissolution peaks, the results for the Quaternary and Neogene correlate well from site to site and are within the productivity range of present-day low to medium latitude open oceans. Our method may provide an opportunity to actually quantify blue-ocean primary productivity in sedimentary carbonate environments, but requires validation by other, more established ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site 598 sediments were analyzed to determine the factors controlling the rare earth element (REE) geochemistry of the hydrothermal component. Site 598 provides an ideal sample suite for this purpose. Samples are lithologically "simple," primarily consisting of a hydrothermal component and biogenous carbonates. Also, the composition of the hydrothermal component appears unchanged through time or space, and the site appears to have undergone minimal diagenetic alteration. The shale-normalized REE patterns are similar to the pattern of seawater, varying only in absolute REE content. The REE content increases with distance from the paleorise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Results presented are consistent with the following model: the source mechanism for the REE content of hydrothermal sediments is scavenging by Fe oxyhydroxides from seawater. With prolonged exposure to seawater resulting from transport far from the injection point and/or long residence at the seawatersediment interface, the absolute REE content of hydrothermal sediments increases and becomes more like seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the Pb isotope data for the Leg 92 metalliferous sediments (carbonate-free fraction) form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts (MORB) toward the field for Mn nodules. These arrays are directed closely to the average values of Mn nodules, the composition of which reflects the Pb isotope composition of seawater (Reynolds and Dasch, 1971). Since the Leg 92 samples are almost devoid of continentally derived detritus, it can be inferred that the more radiogenic end-member is seawater. The less radiogenic end-member lies in the very middle of the MORB field, and hence can be considered to reflect the Pb isotope composition of typical ocean-ridge basalt. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb from the two different end-member sources. According to this model, eight samples from Sites 599 to 601 contain 50 to 100% basaltic Pb. Five of these samples have compositions that are identical within the uncertainty of the analyses. We use the average of these five values to define our unradiogenic end-member in the linear mixing model. The ratios used for this average are 206Pb/204Pb = 18.425 ± 0.010; 207Pb/204Pb = 15.495 ± 0.018; 208Pb/204Pb = 37.879 ± 0.068. These values should approximate the average Pb isotope composition of discharging hydrothermal solutions, and therefore also that of the basaltic crust, over the period of time represented by these samples ( 4 m.y., from 4 to 8 Ma). Sr isotope ratios show a significant range of values, from 0.7082 to 0.7091. The lower ratios are well outside the value of 0.70910 ± 6 for modern-day seawater (Burke et al., 1982). However, most values correspond very closely to the curve of 87Sr/86Sr versus age for seawater, with older samples having progressively lower 87Sr/86Sr ratios. The simplest explanation for this progressive reduction is that recrystallization of the abundant biogenic carbonate in the sediments released older seawater Sr which was incorporated into ferromanganiferous phases during diagenesis. Leg 92 metalliferous sediments have total rare earth element (REE) contents that range on a carbonate-free basis from 131 to 301 ppm, with a clustering between 167 and 222 ppm. The patterns have strong negative Ce anomalies. Samples from Sites 599 to 601 display a slight but distinct enrichment in the heavy REE relative to the light REE, whereas those from Sites 597 to 598 show almost no heavy REE enrichment. The former patterns (those for Sites 599 to 601) are interpreted as indicating moderate diagenetic alteration of metalliferous sediments originating at the EPR axis; the latter reflect more complete diagenetic modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.