958 resultados para acceleration of particles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work, we report the synthesis and characterization of NaNbO3 particles obtained by microwave-assisted hydrothermal method from Nb2O5 and NaOH. The synthesis was made at different periods at 180 °C and 300W. The crystallization of NaNbO3 structures produced Na2Nb2O6.H2O in the intermediate phase with fiber-like morphology, and this is associated with the synthesis time. Pure orthorhombic NaNbO3 with cube-like morphology originates after synthesizing for 240 minutes. To verify the remnant polarization of particles, films were obtained by electrophoresis process and sintered at 800°C for 10 minutes in a microwave furnace. The films characterization indicated that films of niobate with fiber-like morphology present remaining polarization, and the morphology of cubes did not show remaining polarization. Considering these results, it can be concluded that the morphology implemented ferroelectric property of NaNbO3.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nano- (30-60 nm) and submicron (100-350 nm) ZnO particles were synthesized using solvothermal method at 200 degrees C from an ethanolic solution of zinc acetate dihydrate, applying different reaction conditions, i.e., pH value of precursor and time of the reaction. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance (DR), Raman spectroscopy, and photoluminescence (PL) spectroscopy have been employed for characterization of synthesized ZnO powders. It was shown that the structural, morphological, and optical properties are largely determined by reaction conditions during solvothermal synthesis. The particle crystallinity improves with the decrease of pH value and/or the increase of time of the reaction. The Raman and PL spectra analyses indicate that the oxygen interstitials are dominant intrinsic defects in solvothermally synthesized ZnO powders. It was observed that concentration of defects in wurtzite ZnO crystal lattices slightly changes with the variation of pH value of the precursor and time of the solvothermal reaction. The correlation between structural ordering and defect structure of particles and corresponding growth processes was discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study assessed the effects of the local use of Saccharomyces cerevisiae as monotherapy and as an adjuvant to the mechanical treatment of ligature-induced periodontitis in rats. Periodontitis was induced in 72 rats via the installation of a ligature around the mandibular first molar. After 7 d, the ligature was removed and the rats were placed in one of the following groups: no treatment (C; n = 18); scaling and root planing (SRP; n = 18); local irrigation with probiotics (PRO; n = 18); and SRP followed by local irrigation with probiotics (SRP/PRO; n = 18). Six rats from each group were killed at 7, 15 and 30 d. The histological characteristics, alveolar bone loss (ABL) and immunolabeling of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), interleukin-10 (IL-10) and TRAP on the furcation area of the first molar were assessed. The PRO group showed features of acceleration of the tissue-repair process during the entire experiment. On day 15, there was less ABL in the SRP/PRO group compared with the C group. There were fewer TRAP-positive cells in the SRP and SRP/PRO groups at 30 d. There was less immunostaining for TNF-α in the PRO and SRP/PRO groups and less immunostaining for IL-1β in the PRO group. However, there was more immunostaining for IL-10 in the PRO group on day 15. Local use of the probiotic did not result in any adverse effects on periodontal tissues. When used as monotherapy or as an adjuvant, the probiotic was effective at controlling periodontitis in rats.
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The bamboo waste can be an alternative material to sustain the crescent demand for particleboards, also bringing ecological benefits as reduction of the pressure for raw materials and landfill space demands. In this context, this research aimed to manufacture and determine some physical and mechanical properties of particleboards with bamboo waste particles (Dendrocalamus giganteus), obtained from different sources, bonded with four different percentages of urea–formaldehyde (UF) based resin (6%, 8%, 10% and 12% related to dry material of particles). Response variables investigated were: density; moisture content; thickness swelling in 2 and 24 hours; water absorption in 2 and 24 hours; internal adhesion (STpe); strength in tension parallel to faces (STpa); modulus of elasticity (MOE) and modulus of rupture (MOR). Results permitted to conclude that particleboards as mentioned showed good performance only in the physical properties requirements imposed by Brazilian Standard NBR 14810, but this was not observed to mechanical properties considered. New researches are needed in order to optimize the producing process parameters.
Resumo:
We address the investigation of the solvation properties of the minimal orientational model for water originally proposed by [Bell and Lavis, J. Phys. A 3, 568 (1970)]. The model presents two liquid phases separated by a critical line. The difference between the two phases is the presence of structure in the liquid of lower density, described through the orientational order of particles. We have considered the effect of a small concentration of inert solute on the solvent thermodynamic phases. Solute stabilizes the structure of solvent by the organization of solvent particles around solute particles at low temperatures. Thus, even at very high densities, the solution presents clusters of structured water particles surrounding solute inert particles, in a region in which pure solvent would be free of structure. Solute intercalates with solvent, a feature which has been suggested by experimental and atomistic simulation data. Examination of solute solubility has yielded a minimum in that property, which may be associated with the minimum found for noble gases. We have obtained a line of minimum solubility (TmS) across the phase diagram, accompanying the line of maximum density. This coincidence is easily explained for noninteracting solute and it is in agreement with earlier results in the literature. We give a simple argument which suggests that interacting solute would dislocate TmS to higher temperatures.
Resumo:
The synthesis and characterization of graphite oxide (GO), graphene (GS), and the composites: GS-CeO2 and GO-CeO2 are reported. This synthesis was carried out by mixing aqueous solutions of CeCl3 center dot 7H(2)O and GO, which yields the oxidized composite GO-CeO2. GO-CeO2 was hydrothermally reduced with ethylene glycol, at 120 A degrees C, yielding the reduced composite GS-CeO2. GO, GS ,and the composites with CeO2 were characterized by CHN, TG/DTG, BET, XRD, SEM microscopy, FTIR, and Raman spectroscopy. The estimation of crystallite size of CeO2 anchored on GO and on GS by Raman, XRD, and SEM agreed very well showing diameters about 5 nm. The role of particles of CeO2 coating carbon sheets of GO and GS was discussed.
Resumo:
Models of the filtration phenomenon describe the mass balance in bed filtration in terms of particle removal mechanisms, and allow for the determination of global particle removal efficiencies. These models are defined in terms of the geometry and characteristic elements of granule collectors, particles and fluid, and also the composition of the balance of forces that act in the particle collector system. This work analyzes particles collection efficiency comparing downflow and upflow direct filtration, taking into account the contribution of the gravitational factor of the settling removal efficiency in future proposal of initial collection efficiency models for upflow filtration. A qualitative analysis is also made of the proposal for the collection efficiency models for particle removal in direct downflow and upflow filtration using a Computational Fluid Dynamics (CFD) tool. This analysis showed a strong influence of gravitational factor in initial collection efficiency (t = 0) of particles, as well as the reasons of their values to be smaller for upflow filtration in comparison with the downflow filtration.
Resumo:
Background ArtinM is a D-mannose-specific lectin from Artocarpus integrifolia seeds that induces neutrophil migration and activation, degranulation of mast cells, acceleration of wound healing, induction of interleukin-12 production by macrophages and dendritic cells, and protective T helper 1 immune response against Leishmania major, Leishmania amazonensis and Paracoccidioides brasiliensis infections. Considering the important biological properties of ArtinM and its therapeutic applicability, this study was designed to produce high-level expression of active recombinant ArtinM (rArtinM) in Escherichia coli system. Results The ArtinM coding region was inserted in pET29a(+) vector and expressed in E. coli BL21(DE3)-Codon Plus-RP. The conditions for overexpression of soluble ArtinM were optimized testing different parameters: temperatures (20, 25, 30 or 37°C) and shaking speeds (130, 200 or 220 rpm) during induction, concentrations of the induction agent IPTG (0.01-4 mM) and periods of induction (1-19 h). BL21-CodonPlus(DE3)-RP cells induced under the optimized conditions (incubation at 20°C, at a shaking speed of 130 rpm, induction with 0.4 mM IPTG for 19 h) resulted in the accumulation of large amounts of soluble rArtinM. The culture provided 22.4 mg/L of rArtinM, which activity was determined by its one-step purification through affinity chromatography on immobilized D-mannose and glycoarray analysis. Gel filtration showed that rArtinM is monomeric, contrasting with the tetrameric form of the plant native protein (jArtinM). The analysis of intact rArtinM by mass spectrometry revealed a 16,099.5 Da molecular mass, and the peptide mass fingerprint and esi-cid-ms/ms of amino acid sequences of peptides from a tryptic digest covered 41% of the total ArtinM amino acid sequence. In addition, circular dichroism and fluorescence spectroscopy of rArtinM indicated that its global fold comprises β-sheet structure. Conclusions Overall, the optimized process to express rArtinM in E. coli provided high amounts of soluble, correctly folded and active recombinant protein, compatible with large scale production of the lectin.
Resumo:
Pregnancy affects both maternal and fetal metabolism, and even in non-diabetic women, it exerts a diabetogenic effect. Among pregnant women, 2% to 14% develop gestational diabetes. Pregnancy can also occur in women with preexisting diabetes, which may predispose the fetus to many alterations in organogenesis, restrict growth, and the mother, to some diabetes-related complications, such as retinopathy and nephropathy, or to acceleration of the course of these complications, if they are already present. Women with gestational diabetes generally start their treatment with diet and lifestyle changes; when these changes are not enough for optimal glycemic control, insulin therapy must then be considered. Women with type 2 diabetes using oral hypoglycemic agents are advised to change to insulin therapy. Those with preexisting type 1 diabetes should start intensive glycemic control. As basal insulin analogues have frequently been used off-label in pregnant women, there is a need to evaluate their safety and efficacy. The aim of this review is to report the use of both short- and long-acting insulin analogues during pregnancy and to enable clinicians, obstetricians, and endocrinologists to choose the best insulin treatment for their patients.