885 resultados para YBCO coated conductor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid metal marbles that are droplets of liquid metal encapsulated by micro- or nanoparticles are introduced. Droplets of galinstan liquid metal are coated with insulators (including Teflon and silica) and semiconductors (including WO3, TiO2, MoO3, In2O3 and carbon nanotubes) by rolling over a powder bed and also by submerging in colloidal suspensions. It is shown that these marbles can be split and merged, can be suspended on water, and are even stable when moving under the force of gravity and impacting a flat solid surface. Furthermore, the marble coating can operate as an active electronic junction and the nanomaterial coated liquid metal marble can act as a highly sensitive electrochemical based heavy metal ion sensor. This new element thus represents a significant platform for the advancement of research into soft electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called “liquid metal marbles”. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: People often modify oral solid dosage forms when they experience difficulty swallowing them. Modifying dosage forms may cause adverse effects to the patient, and the person undertaking the modification. Pharmacists are often the first point of contact for people in the general community seeking advice regarding medications. Nurses are at the forefront of administering medications to patients and are likely to be most directly affected by a patient’s swallowing ability, while general practitioners (GPs) are expected to consider swallowing abilities when prescribing medications. Objective: To compare the perspectives and experiences of GPs, pharmacists, and nurses regarding medication dosage form modification and their knowledge of medication modification. Method: Questionnaires tailored to each profession were posted to 630 GPs, and links to an online version were distributed to 2,090 pharmacists and 505 nurses. Results: When compared to pharmacists and GPs, nurses perceived that a greater proportion of the general community modified solid dosage forms. Pharmacists and GPs were most likely to consider allergies and medical history when deciding whether to prescribe or dispense a medicine, while nurses’ priorities were allergies and swallowing problems when administering medications. While nurses were more likely to ask their patients about their ability to swallow medications, most health professionals reported that patients “rarely” or “never” volunteered information about swallowing difficulties. The majority of health professionals would advise a patient to crush or split noncoated non-sustained-release tablets, and would consult colleagues or reference sources for sustained-release or coated tablets. Health professionals appeared to rely heavily upon the suffix attached to medication names (which suggest modified release properties) to identify potential problems associated with modifying medications. Conclusion: The different professional roles and responsibilities of GPs, pharmacists, and nurses are associated with different perspectives of, and experiences with, people modifying medications in the general community and knowledge about consequences of medication modification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between the drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from a dry powder inhaler (DPI) formulation. Initially model silica probes of approximately 4 μm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres preattached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most research virtually ignores the important role of a blood clot in supporting bone healing. In this study, we investigated the effects of surface functional groups carboxyl and alkyl on whole blood coagulation, complement activation and blood clot formation. We synthesised and tested a series of materials with different ratios of carboxyl (–COOH) and alkyl (–CH3, –CH2CH3 and –(CH2)3CH3) groups. We found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/– CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of coagulation activation. The pattern of complement activation was entirely similar to that of surface-induced coagulation. All material coated surfaces resulted in clots with thicker fibrin in a denser network at the clot/material interface and a significantly slower initial fibrinolysis when compared to uncoated glass surfaces. The amounts of platelet-derived growth factor-AB (PDGF-AB) and transforming growth factor-b (TGF-b1) released from an intact clot were higher than a lysed clot. The release of PDGF-AB was found to be correlated with the fibrin density. This study demonstrated that surface chemistry can significantly influence the activation of blood coagulation and complement system, resultant clot structure, susceptibility to fibrinolysis as well as release of growth factors, which are important factors determining the bone healing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ideal coating materials for implants should be able to induce excellent osseointegration, which requires several important parameters, such as good bonding strength, limited inflammatory reaction, balanced osteoclastogenesis and osteogenesis, to gain well-functioning coated implants with long-term life span after implantation. Bioactive elements, like Sr, Mg and Si, have been found to play important roles in regulating the biological responses. It is of great interest to combine bioactive elements for developing bioactive coatings on Ti-6Al-4V orthopedic implants to elicit multidirectional effects on the osseointegration. In this study, Sr, Mg and Si-containing bioactive Sr2MgSi2O7 (SMS) ceramic coatings on Ti-6Al-4V were successfully prepared by plasma-spray coating method. The prepared SMS coatings have significantly higher bonding strength (~37MPa) than conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was also found that the prepared SMS coatings switch the macrophage phenotype into M2 extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca2+ and Toll-like receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also inhibited by SMS coatings. The expression of osteoclastogenesis related genes (RANKL and MCSF) in bone marrow derived mesenchymal cells (BMSCs) with the involvement of macrophages was decreased, while OPG expression was enhanced on SMS coatings compared to HA coatings, indicating that SMS coatings also downregulated the osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement of macrophages was comparable between SMS and HA coatings. Therefore, the prepared SMS coatings showed multidirectional effects, such as improving bonding strength, reducing inflammatory reaction and downregulating osteoclastic activities, but maintaining a comparable osteogenesis, as compared with HA coatings. The combination of bioactive elements of Sr, Mg and Si into bioceramic coatings can be a promising method to develop bioactive implants with multifunctional properties for orthopaedic application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the effect of a calcium phosphate (CaP) coating onto a polycaprolactone melt electrospun scaffold and in vitro culture conditions on ectopic bone formation in a subcutaneous rat model. The CaP coating resulted in an increased alkaline phosphatase activity (ALP) in ovine osteoblasts regardless of the culture conditions and this was also translated into higher levels of mineralisation. A subcutaneous implantation was performed and increasing ectopic bone formation was observed over time for the CaPcoated samples previously cultured in osteogenic media whereas the corresponding non-coated samples displayed a lag phase before bone formation occurred from 4 to 8 weeks post-implantation. Histology and immunohistochemistry revealed bone fill through the scaffolds 8 weeks post-implantation for coated and non-coated specimens and that ALP, osteocalcin and collagen 1 were present at the ossification front and in the bone tissues. Vascularisation in the vicinity of the bone tissues was also observed indicating that the newly formed bone was not deprived of oxygen and nutrients.We found that in vitro osteogenic induction was essential for achieving bone formation and CaP coating accelerated the osteogenic process. We conclude that high cell density and preservation of the collagenous and mineralised extracellular matrix secreted in vitro are factors of importance for ectopic bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g�1 at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kaposi's sarcoma (KS) in general, and acquired immunodeficiency syndrome-related KS (AIDS-KS) in particular, is a highly invasive and intensely angiogenic neoplasm of unknown cellular origin. We have recently established AIDS-KS cells in long term culture and reported the development of KS-like lesions in nude mice inoculated with these cells. Here, we have examined the in vitro invasiveness of basement membrane by AIDS-KS cells, as well as the effect(s) of their supernatants on the migration and invasiveness of human vascular endothelial cells. AIDS-KS cells were highly invasive in the Boyden chamber invasion assay and formed invasive, branching colonies in a 3-dimensional gel (Matrigel). Normal endothelial cells form tube-like structures on Matrigel. AIDS-KS cell-conditioned media induced endothelial cells to form invasive clusters in addition to tubes. KS-cell-conditioned media, when placed in the lower compartment of the Boyden chamber, stimulated the migration of human and bovine vascular endothelial cells across filters coated with either small amounts of collagen IV (chemotaxis) or a Matrigel barrier (invasion). Basic fibroblast growth factor could also induce endothelial cell chemotaxis and invasion in these assays. However, when antibodies to basic fibroblast growth factor were used the invasive activity induced by the AIDS-KS-cell-conditioned media was only marginally inhibited, suggesting that the large quantities of basic fibroblast growth factor-like material released by the AIDS-KS cells are not the main mediators of this effect. Specific inhibitors of laminin and collagenase IV action, which represent critical determinants of basement membrane invasion, blocked the invasiveness of the AIDS-KS cell-activated endothelial cells in these assays. These data indicate that KS cells appear to be of smooth muscle origin but secrete a potent inducer of endothelial cell chemotaxis and invasiveness which could be responsible for angiogenesis and the resulting highly vascularized lesions. These assays appear to be a model to study the invasive spread and angiogenic capacity of human AIDS-related KS and should prove useful in the identification of molecular mediators and potential inhibitors of neoplastic neovascularization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Despite a revived interest in fat grafting procedures, clinicians still fail to demonstrate clearly the in vivo behavior of fat grafts as a dynamic tissue substitute. However, the basic principles in cellular biology teach us that cells can survive and develop, provided that a structural matrix exists that directs their behavior. The purpose of this in vitro study was to analyze that behavior of crude fat grafts, cultured on a three-dimensional laminin-rich matrix. Methods Nonprocessed, human fat biopsy specimens (approximately 1 mm) were inoculated on Matrigel-coated wells to which culture medium was added. The control group consisted of fat biopsy specimens embedded in medium alone. The cellular proliferation pattern was followed over 6 weeks. Additional cultures of primary generated cellular spheroids were performed and eventually subjected to adipogenic differentiation media. Results A progressive outgrowth of fibroblast-like cells from the core fat biopsy specimen was observed in both groups. Within the Matrigel group, an interconnecting three-dimensional network of spindle-shaped cells was established. This new cell colony reproduced spheroids that functioned again as solitary sources of cellular proliferation. Addition of differentiation media resulted in lipid droplet deposition in the majority of generated cells, indicating the initial steps of adipogenic differentiation. Conclusions The authors noticed that crude, nonprocessed fat biopsy specimens do have considerable potential for future tissue engineering-based applications, provided that the basic principles of developmental, cellular biology are respected. Spontaneous in vitro expansion of the stromal cells present in fat grafts within autologous and injectable matrices could create "off-the-shelf" therapies for reconstructive procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of cell-cell adhesion in carcinoma cells may be an important step in the acquisition of an invasive, metastatic phenotype. We have examined the expression of the epithelial-specific cell adhesion molecule uvomorulin (E-cadherin, cell-CAM 120/80, L-CAM) in human breast cancer cell lines. We find that fibroblastoid, highly invasive, vimentin-expressing breast cancer cell lines do not express uvomorulin. Of the more epithelial-appearing, less invasive, keratin-expressing breast cancer cell lines, some express uvomorulin, and some do not. We examined the morphologies of the cell lines in the reconstituted basement membrane matrix Matrigel and measured the ability of the cells to traverse a Matrigel-coated filter as in vitro models for detachment of carcinoma cells from neighboring cells and invasion through basement membrane into surrounding tissue. Colonies of uvomorulin-positive cells have a characteristic fused appearance in Matrigel, whereas uvomorulin-negative cells appear detached. Cells which are uvomorulin negative and vimentin positive have a stellate morphology in Matrigel. We show that uvomorulin is responsible for the fused colony morphology in Matrigel since treatment of uvomorulin-positive MCF-7 cells with an antibody to uvomorulin caused the cells to detach from one another but did not induce invasiveness in these cells, as measured by their ability to cross a Matrigel-coated polycarbonate filter in a modified Boyden chamber assay. Two uvomorulin-negative, vimentin-negative cell lines are also not highly invasive as measured by this assay. We suggest that loss of uvomorulin-mediated cell-cell adhesion may be one of many changes involved in the progression of a carcinoma cell to an invasive phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane type 1 metalloprotease (MT1-MMP) is a transmembrane metalloprotease that plays a major role in the extracellular matrix remodeling, directly by degrading several of its components and indirectly by activating pro-MMP2. We investigated the effects of MT1-MMP overexpression on in vitro and in vivo properties of human breast adenocarcinoma MCF7 cells, which do not express MT1-MMP or MMP-2. MT1-MMP and MMP-2 cDNAs were either transfected alone or cotransfected. All clones overexpressing MT1-MMP 1) were able to activate endogenous or exogenous pro-MMP-2, 2) displayed an enhanced in vitro invasiveness through matrigel-coated filters independent of MMP-2 transfection, 3) induced the rapid development of highly vascularized tumors when injected subcutanously in nude mice, and 4) promoted blood vessels sprouting in the rat aortic ring assay. These effects were observed in all clones overexpressing MT1-MMP regardless of MMP-2 expression levels, suggesting that the production of MMP-2 by tumor cells themselves does not play a critical role in these events. The angiogenic phenotype of MT1-MMP-producing cells was associated with an up-regulation of VEGF expression. These results emphasize the importance of MT1-MMP during tumor angiogenesis and open new opportunities for the development of antiangiogenic strategies combining inhibitors of MT1-MMP and VEGF antagonists. - Sounni, N. E., Devy, L., Hajitou, A., Frankenne, F., Munaut, C., Gilles, C., Deroanne, C., Thompson, E. W., Foidart, J. M., Noel, A. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminin has been shown to promote the malignant phenotype and the expression of certain laminin receptors has been correlated with the malignant character of the tumors. Here new cell lines were isolated from a human colon cancer cell line (LCC-C1) based on their adhesiveness to laminin. The laminin-adherent subclone formed large tumors in nude mice, whereas the laminin-nonadherent subclone failed to form sizable tumors. Only the laminin-adherent subclone adhered to laminin and invaded through Matrigel-coated filters. The adhesive and invasive ability of the cells was almost completely blocked by low concentrations (1.0 μg/ml) of anti-β1 integrin antibody. The amounts of total cellular β1 integrin protein were similar in the two subclones when compared by Western blot, and the mRNA levels also did not differ. The localization of β1 integrin laminin receptor varied in the two subclones; the laminin-adherent subclone showed a linear distribution along the cell-cell junctions, while the laminin-nonadherent subclone did not stain between the cells. Using laminin-Sepharose affinity chromatography, more β1 integrin was obtained from the laminin-adherent subclone. These findings suggest that alterations in the affinity of β1 integrin for laminin and in its membrane distribution might be involved in the increased tumorigenicity observed in colon cancer cells.