992 resultados para Wood basic density
Resumo:
Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-A -vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed.
Resumo:
Isoniazid (isonicotinohydrazide) is an important first-line antitubercular drug that targets the InhA enzyme which synthesizes the critical component of the mycobacterial cell wall. An experimental charge-density analysis of isoniazid has been performed to understand its structural and electronic properties in the solid state. A high-resolution single-crystal X-ray intensity data has been collected at 90 K. An aspherical multipole refinement was carried out to explore the topological and electrostatic properties of the isoniazid molecule. The experimental results were compared with the theoretical charge-density calculations performed using CRYSTAL09 with the B3LYP/6-31G** method. A topological analysis of the electron density reveals that the Laplacian of electron density of the N-N bond is significantly less negative, which indicates that the charges at the b.c.p. (bond-critical point) of the bond are least accumulated, and so the bond is considered to be weak. As expected, a strong negative electrostatic potential region is present in the vicinity of the O1, N1 and N3 atoms, which are the reactive locations of the molecule. The C-H center dot center dot center dot N, C-H center dot center dot center dot O and N-H center dot center dot center dot N types of intermolecular hydrogen-bonding interactions stabilize the crystal structure. The topological analysis of the electron density on hydrogen bonding shows the strength of intermolecular interactions.
Resumo:
The paper addresses the effect of particle size on tar generation in a fixed bed gasification system. Pyrolysis, a diffusion limited process, depends on the heating rate and the surface area of the particle influencing the release of the volatile fraction leaving behind residual char. The flaming time has been estimated for different biomass samples. It is found that the flaming time for wood flakes is almost one fourth than that of coconut shells for same equivalent diameter fuel samples. The particle density of the coconut shell is more than twice that of wood spheres, and almost four times compared with wood flakes; having a significant influence on the flaming time. The ratio of the particle surface area to that of an equivalent diameter is nearly two times higher for flakes compared with wood pieces. Accounting for the density effect, on normalizing with density of the particle, the flaming rate is double in the case of wood flakes or coconut shells compared with the wood sphere for an equivalent diameter. This is due to increased surface area per unit volume of the particle. Experiments are conducted on estimation of tar content in the raw gas for wood flakes and standard wood pieces. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to fast pyrolysis process resulting in higher tar fraction with low char yield. Increased residence time with staged air flow has a better control on residence time and lower tar in the raw gas. (C) 2014 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
Interaction of adsorbate on charged surfaces, orientation of the analyte on the surface, and surface enhancement aspects have been studied. These aspects have been explored in details to explain the surface-enhanced Raman spectroscopic (SERS) spectra of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW or CL-20), a well-known explosive, and 2,4,6-trinitrotoluene (TNT) using one-pot synthesis of silver nanoparticles via biosynthetic route using natural precursor extracts of clove and pepper. The biosynthesized silver nanoparticles (bio Ag Nps) have been characterized using UV-vis spectroscopy, scanning electron microscopy and atomic force microscopy. SERS studies conducted using bio Ag Nps on different water insoluble analytes, such as CL-20 and TNT, lead to SERS signals at concentration levels of 400 pM. The experimental findings have been corroborated with density functional computational results, electrostatic surface potential calculations, Fukui functions and potential measurements.
Resumo:
Influence of polymer morphology on the inception and the growth of electrical trees in unfilled low density polyethylene (LDPE) as well as LDPE filled with 1, 3 and 5% by weight nanoalumina samples stressed with 50 Hz ac voltage has been studied. It is seen that there is a significant improvement in tree inception voltage with filler loading in LDPE filled with nanoparticles. Tree inception voltage increased with the filler loading up to 3% by weight nanoalumina loading and showed a reduction at 5% by weight loading. Change in tree growth patterns from branch to bush as well as a slower tree growth with increase in filler loading in LDPE alumina nanocomposites were observed. The degree of crystallinity and change in crystalline morphology induced by the presence of alumina nanoparticles in LDPE was studied using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). DSC results show a similar melting behaviour for both unfilled LDPE and LDPE nanocomposites. However, there is a reduction in the degree of crystallinity for LDPE filled with 5% by weight nanoalumina. An increase in lamellae packing with increase in filler loadings and a highly disordered spherulitic structure for LDPE filled with 5% by weight nanoalumina was observed from the SEM images. The slow propagation of tree growth as well as reduction in tree inception voltage with increase in filler loadings were attributed to the morphological changes observed in the LDPE nanocomposites.
Resumo:
A systematic study of six tetracyclones has been carried out using experimental and theoretical charge density analysis. A three pronged approach based on quantum theory of atoms in molecules (QTAIM), nucleus independent chemical shifts (NICS) criterion, and source function (SF) contributions has been performed to establish the degree of antiaromaticity of the central five-membered ring in all the derivatives. Electrostatic potentials mapped on the isodensity surface show that electron withdrawing substituents turn both C and O atoms of the carbonyl group more electropositive while retaining the direction of polarity.
Resumo:
We employ an exact solution of the simplest model for pump-probe time-resolved photoemission spectroscopy in charge-density-wave systems to show how, in nonequilibrium, the gap in the density of states disappears while the charge density remains modulated, and then the gap reforms after the pulse has passed. This nonequilibrium scenario qualitatively describes the common short-time experimental features in TaS2 and TbTe3, indicating a quasiuniversality for nonequilibrium ``melting'' with qualitative features that can be easily understood within a simple picture.
Resumo:
Natural multispecies acoustic choruses such as the dusk chorus of a tropical rain forest consist of simultaneously signalling individuals of different species whose calls travel through a common shared medium before reaching their `intended' receivers. This causes masking interference between signals and impedes signal detection, recognition and localization. The levels of acoustic overlap depend on a number of factors, including call structure, intensity, habitat-dependent signal attenuation and receiver tuning. In addition, acoustic overlaps should also depend on caller density and the species composition of choruses, including relative and absolute abundance of the different calling species. In this study, we used simulations to examine the effects of chorus species relative abundance and caller density on the levels of effective heterospecific acoustic overlap in multispecies choruses composed of the calls of five species of crickets and katydids that share the understorey of a rain forest in southern India. We found that on average species-even choruses resulted in higher levels of effective heterospecific acoustic overlap than choruses with strong dominance structures. This effect was found consistently across dominance levels ranging from 0.4 to 0.8 for larger choruses of forty individuals. For smaller choruses of twenty individuals, the effect was seen consistently for dominance levels of 0.6 and 0.8 but not 0.4. Effective acoustic overlap (EAO) increased with caller density but the manner and extent of increase depended both on the species' call structure and the acoustic context provided by the composition scenario. The Phaloria sp. experienced very low levels of EAO and was highly buffered to changes in acoustic context whereas other species experienced high FAO across contexts or were poorly buffered. These differences were not simply predictable from call structures. These simulation-based findings may have important implications for acoustic biodiversity monitoring and for the study of acoustic masking interference in natural environments. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
An experimental charge-density analysis of pyrazinamide (a first line antitubercular drug) was performed using high-resolution X-ray diffraction data (sin theta/lambda)(max) = 1.1 angstrom(-1)] measured at 100 (2) K. The structure was solved by direct methods using SHELXS97 and refined by SHELXL97. The total electron density of the pyrazinamide molecule was modeled using the Hansen-Coppens multipole formalism implemented in the XD software. The topological properties of electron density determined from the experiment were compared with the theoretical results obtained from CRYSTAL09 at the B3LYP/6-31G** level of theory. The crystal structure was stabilized by N-H center dot center dot center dot N and N-H center dot center dot center dot O hydrogen bonds, in which the N3-H3B center dot center dot center dot N1 and N3-H3A center dot center dot center dot O1 interactions form two types of dimers in the crystal. Hirshfeld surface analysis was carried out to analyze the intermolecular interactions. The fingerprint plot reveals that the N center dot center dot center dot H and O center dot center dot center dot H hydrogen-bonding interactions contribute 26.1 and 18.4%, respectively, of the total Hirshfeld surface. The lattice energy of the molecule was calculated using density functional theory (B3LYP) methods with the 6-31G** basis set. The molecular electrostatic potential of the pyrazinamide molecule exhibits extended electronegative regions around O1, N1 and N2. The existence of a negative electrostatic potential (ESP) region just above the upper and lower surfaces of the pyrazine ring confirm the pi-electron cloud.
Resumo:
Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of Delta E-t approximate to 0.3 eV and with a density of state distribution as D-t(Et-j) = D-t0 exp(-Delta E-t/kT) with D-t0 = 5.02 x 10(11) cm(-2) eV(-1). Such a model is useful for developing simulation tools for circuit design. (C) 2014 AIP Publishing LLC.
Resumo:
The present work reports the biocompatibility property of injection molded HDPE-HA-Al2O3 hybrid composites. In vitro cytocompatibility results reveal that osteogenic cell viability and bone mineralization are favorably supported in a statistically significant manner on HDPE-20% HA-20% Al2O3 composite, in comparison to HDPE-40 wt.% HA or HDPE-40 wt.% Al2O3. The difference in cytocompatibility property is explained in terms of difference in substrate wettability/surface energy and importantly, both the cell proliferation at 7 days or bone mineralization at 21 days on HDPE-20% HA-20% Al2O3 composite are either comparable or better than sintered HA. The progressive healing of cylindrical femoral bone defects in rabbit animal model was assessed by implantation experiments over 1, 4 and 12 weeks. Based on the histological analysis as well as histomorphometrical evaluation, a better efficacy of HDPE-20% HA-20% Al2O3 over high-density polyethylene (HDPE) for bone regeneration and neobone formation at host bone-implant interface was established. Taken together, the present study unequivocally establishes that despite the presence of 20% Al2O3, HDPE-based hybrid composites are as biocompatible as HA in vitro or better than HDPE in vivo.
Resumo:
We study the onset of the neutron drip in high-density matter in the presence of a magnetic field. It has been found that, for systems having only protons and electrons, in the presence of a magnetic field greater than or similar to 10(15) G, neutronization occurs at a density that is at least an order of magnitude higher compared to that in a nonmagnetic system. In a system with heavier ions, the effect of the magnetic field, however, starts arising at a much higher field, greater than or similar to 10(17) G. These results may have important implications for high-magnetic-field neutron stars and white dwarfs and, in general, in nuclear astrophysics when the system is embedded within a strong magnetic field.
Resumo:
In this investigation transparent conducting properties of as-deposited and annealed ZnO:Sn:F films deposited using different spray flux density by changing the solvent volume (10 mL, 20 mL ... 50 mL) of the starting solutions have been studied and reported. The structural analyses of the films indicate that all the films have hexagonal wurtzite structure of ZnO with preferential orientation along (002) plane irrespective of the solvent volume and annealing treatment whereas, the overall crystalline quality of the films is found to be enhanced with the increase in solvent volume as well as with annealing. This observed enhancement is strongly supported by the optical and surface morphological results. From the measurements of electrical parameters, it is seen that, the annealed films exhibit better electrical properties compared to the as-deposited ones. Annealing has caused agglomeration of grains as confirmed by the surface morphological studies. Also, the annealing process has led to an improvement in the optical transparency as well as band gap. It is found from the analyses of the characteristics of the as- deposited and annealed films that the annealed film deposited from starting solution having solvent volume of 50 mL is optimal in all respects, as it possesses all the desirable characteristics including the quality factor (1.60 x 10(-4) (Omega/sq.)(-1)). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
Soluble lead acid redox flow battery (SLRFB) offers a number of advantages. These advantages can be harnessed after problems associated with buildup of active material on. electrodes (residue) are resolved. A mathematical model is developed to understand residue formation in SLRFB. The model incorporates fluid flow, ion transport, electrode reactions, and non-uniform current distribution on electrode surfaces. A number of limiting cases are studied to conclude that ion transport and electrode reaction on anode simultaneously control battery performance. The model fits the reported cell voltage vs. time profiles very well. During the discharge cycle, the model predicts complete dissolution of deposited material from trailing edge side of the electrodes. With time, the active surface area of electrodes decreases rapidly. The corresponding increase in current density leads to precipitous decrease in cell potential before all the deposited material is dissolved. The successive charge-discharge cycles add to the residue. The model correctly captures the marginal effect of flow rate on cell voltage profiles, and identifies flow rate and flow direction as new variables for controlling residue buildup. Simulations carried out with alternating flow direction and a SLRFB with cylindrical electrodes show improved performance with respect to energy efficiency and residue buildup. (C) 2014 The Electrochemical Society. All rights reserved.