909 resultados para Wine and wine making Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-alkyl-2-methoxypyrazines (MPs) are grape- and insect-derived odor-active compounds responsible for vegetative percepts that are detrimental to wine quality when elevated. This study tested both the effect of closure/packaging types and light/temperature storage conditions on MPs (isopropyl-, secbutyl-, and isobutyl-MP) in wine. An MP-emiched wine rapidly (after 140 hours) and significantly decreased in MP concentration after natural and synthetic cork contact (immersion of closures in wine). This decrease was greatest with synthetic closures (70% - 89% reduction) and secbutyl-MP. Subsequently storage trials tested the effects of commercial closure/packaging options (natural cork, agglomerate cork, synthetic corks, screwcaps and TetraPak® cartons) on MPs in MP-emiched Riesling and Cabernet Franc over 18 months. Regardless of packaging, isobutyl-MP was the most altered from bottling. Notably, all MP levels tended to decrease to the greatest extent in TetraPak® cartons (~34% for all MPs) and there was evidence of contribution ofisoproyl- and secbutyl-MP from cork-based closures (i.e. ~30% increase in secbutyl-MP after 6 months) or from an unidentified wine constituent. To test the effects of various light/temperature conditions (light exposed at ambient temperature in three different bottle hues, light excluded at ambient temperature and light excluded at a "cellar" temperature (14°C)), MP-emiched Riesling and Cabernet Franc were also analyzed for MP concentrations over 12 months. MPs did not vary consistently with light or temperature. Other odorants and physico-chemical properties were tested in all wines during storage trials and closely agree with previous literature. These results provide novel insights into MPs during ageing, interactions with packaging and storage conditions, and assist in the selection of storage conditions/packaging for optimal wine quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Niagara Grape and Wine Community (NGWC) is an industry that has undergone rapid change and expansion as a result of changes in governmental regulations and consumer preferences. As a result of these changes, the demands of the wine industry workforce have changed to reflect the need to implement new strategies and practices to remain viable and competitive. The influx of people into the community with little or no prior practical experience in grape growing (viticulture) or winemaking (oenology) has created a need for additional training and learning opportunities to meet workforce needs. This case study investigated the learning needs of the members of this community and how these needs are currently being met. The barriers to, and the opportunities for, members acquiring new knowledge and developing skills were also explored. Participants were those involved in all levels of the industry and sectors (viticulture, processing, and retail), and their views on needs and suggestions for programs of study were collected. Through cross analyses of sectors, areas of common and unique interest were identified as well as formats for delivery. A common fundamental component was identified by all sectors - any program must have a significant applied component or demonstration of proficiency and should utilize members as peer instructors, mentors, and collaborators to generate a larger shared collective of knowledge. Through the review of learning organizations, learning communities, communities of practices, and learning networks, the principles for the development of a Grape and Wine Learning Network to meet the learning needs of the NGWC outside of formal institutional or academic programs were developed. The roles and actions of members to make such a network successful are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l(-1) HNO3 and in 1 + 1 v/v diluted wine using mixtures of Pd(NO3)(2) + Mg(NO3)(2) and NH4H2PO4 + Mg(NO3)(2) as chemical modifiers. With 5 mug Pd + 3 mug Mg as the modifiers and a two-step pyrolysis (10 s at 400 degreesC and 10 s at 600 degreesC), the formation of carbonaceous residues inside the atomizer was avoided. For 20 mul of sample (wine + 0.056 mol l(-1) HNO3, 1 + 1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 mug l(-1) Cd and 5.0-50 mug l(-1) Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 mug l(-1) for Cd, 0.8 mug l(-1) for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 mug l(-1) and for Pb at 500 mug l(-1). The relative standard deviations (n = 12) were typically < 8% for Cd and < 6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Ph was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fate of folpet from the treatment on vine to the production of wine was studied. Sunlight degraded folpet to unknown products. Phthalimide was a minor metabolite formed on grapes from folpet. Folpet degraded in must, giving 80% phthalimide; the results obtained with model solutions showed that in must folpet can also give small amounts of phthalic acid. During wine-making folpet degraded completely, and at the end of fermentation phthalimide was only present in wine. This compound was stable in wine after several months. The presence of folpet in grapes inhibited the alcoholic fermentation of Saccharomyces cerevisiae and Kloeckera apiculata completely. Phthalimide, on the contrary, had no negative effect on the fermentative action of the two yeasts. GC and HPLC methods were developed to determine folpet and its metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fate of four new fungicides (cyprodinil, fludioxonil, pyrimethanil, and tebuconazole) from the treatment on vine to the production of wine was studied. The influence of clarifying agents (bentonite, charcoal, potassium caseinate, gelatin, and polyvinylpolypyrrolidone) on residue concentrations in wine was also studied. The fungicide residues on grapes showed different decay rates after treatment, with first-order kinetics and half-lives ranging from 8 to 57 days. Grape processing into wine caused considerable residue reduction with cyprodinil (ca. 80%), fludioxonil (ca. 70%), and tebuconazole (ca. 50%) and no reduction with pyrimethanil. The two wine-making techniques employed (with and without maceration) had the same influence on the residue concentrations in wine, except for fludioxonil which showed maximum residue reduction with vinification with maceration. Among the clarifying agents tested, only charcoal showed effective action on the elimination of residue content in wine, proving complete elimination, or almost, of fungicide residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CHEMICAL PROFILE COMPARISON OF SUGARCANE SPIRITS FROM THE SAME WINE DISTILLED IN ALEMBICS AND COLUMNS. Six wines were distilled in two different distillation apparatus (alembic and column) producing 24 distillates (6 for each alembic fraction - head, heart and tail; 6 column distillates). The chemical composition of distillates from the same wine was determined using chromatographic techniques. Analytical data were subjected to Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) allowing discrimination of four clusters according to chemical profiles. Both distillation processes influenced the sugarcane spirits chemical quality since two types of distillates with different quantitative chemical profiles were produced after the elimination of fermentation step influence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"3/86."