876 resultados para WATER-SOLUBLE COMPLEXES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

When a liquid is irradiated with ultrasound, acoustic cavitation (the formation, growth, and implosive collapse of bubbles in liquids irradiated with ultrasound) generally occurs. This is the phenomenon responsible for the driving of chemical reactions (sonochemistry) and the emission of light (sonoluminescence). The implosive collapse of bubbles in liquids results in an enormous concentration of sound energy into compressional heating of the bubble contents. Therefore, extreme chemical and physical conditions are generated during cavitation. The study of multibubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) in exotic liquids such as sulfuric acid (H2SO4) and phosphoric acid (H3PO4) leads to useful information regarding the intracavity conditions during bubble collapse. Distinct sonoluminescing bubble populations were observed from the intense orange and blue-white emissions by doping H2SO4 and H3PO4 with sodium salts, which provides the first experimental evidence for the injected droplet model over the heated-shell model for cavitation. Effective emission temperatures measured based on excited OH• and PO• emission indicate that there is a temperature inhomogeneity during MBSL in 85% H3PO4. The formation of a temperature inhomogeneity is due to the existence of different cavitating bubble populations: asymmetric collapsing bubbles contain liquid droplets and spherical collapsing bubbles do not contain liquid droplets. Strong molecular emission from SBSL in 65% H3PO4 have been obtained and used as a spectroscopic probe to determine the cavitation temperatures. It is found that the intracavity temperatures are dependent on the applied acoustic pressures and the thermal conductivities of the dissolved noble gases. The chemical and physical effects of ultrasound can be used for materials synthesis. Highly reactive species, including HO2•, H•, and OH• (or R• after additives react with OH•), are formed during aqueous sonolysis as a consequence of the chemical effects of ultrasound. Reductive species can be applied to synthesis of water-soluble fluorescent silver nanoclusters in the presence of a suitable stabilizer or capping agent. The optical and fluorescent properties of the Ag nanoclusters can be easily controlled by the synthetic conditions such as the sonication time, the stoichiometry of the carboxylate groups to Ag+, and the polymer molecular weight. The chemical and physical effects of ultrasound can be combined to prepare polymer functionalized graphenes from graphites and a reactive solvent, styrene. The physical effects of ultrasound are used to exfoliate graphites to graphenes while the chemical effects of ultrasound are used to induce the polymerization of styrene which can then functionalize graphene sheets via radical coupling. The prepared polymer functionalized graphenes are highly stable in common organic solvents like THF, CHCl3, and DMF. Ultrasonic spray pyrolysis (USP) is used to prepare porous carbon spheres using energetic alkali propiolates as the carbon precursors. In this synthesis, metal salts are generated in situ, introducing porous structures into the carbon spheres. When different alkali salts or their mixtures are used as the precursor, carbon spheres with different morphologies and structures are obtained. The different precursor decomposition pathways are responsible for the observed structural difference. Such prepared carbon materials have high surface area and are thermally stable, making them potentially useful for catalytic supports, adsorbents, or for other applications by integrating other functional materials into their pores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A C-ficocianina (C-FC), um pigmento comum nas cianobctérias e um dos mais abundantes constituintes da Spirulina platensis, vem sendo estudada por possuir várias propriedades como antioxidante, hepatoprotetora, antiinflamatória e inibidora da enzima COX-2. Alguns autores atribuem também a C-FC um efeito oxidante quando ela é o agente fotossensibilizante utilizado na terapia fotodinâmica (TFD), podendo ser um importante agente no tratamento do câncer. Entretanto ainda pouco se sabe sobre a ação da C-FC, como substância fotosensibilizante, no tratamento de ação fotodinâmica (AFD) em modelos biológicos. A AFD provoca a fotooxidação de substratos biológicos através da geração de espécies reativas de oxigênio produzidas pela associação entre um determinado comprimento de onda, uma substância fotosensível e oxigênio. Existem dois caminhos que levam a morte celular pelo processo de fotooxidação conhecidos como mecanismo do tipo I e tipo II. No mecanismo tipo I são gerados radicais como o radical ânion superóxido e radical hidroxila, enquanto no mecanismo do tipo II a espécie reativa de oxigênio gerada é o oxigênio singlete (1O2). A TFD da C-PC possui muitas vantagens em relação ao uso das hematoporfirinas e seus derivados, como rápida preparação e fácil purificação, ampla faixa de absorção do UV e visível, nenhum efeito local, e significativa redução da fotosensibilidade em tecidos normais por ter uma rápida metabolização em vivo. As pesquisas que avaliam os possíveis efeitos celulares da AFD têm sido também estendidas para as células tumorais que adquirem fenótipo de resistência a múltiplas drogas (MDR). A MDR é um fenômeno no qual células tumorais, selecionadas resistentes a um agente quimioterápico, adquirem resistência a outras drogas, 5 aparentemente não relacionadas. O fenótipo MDR é multifatorial, mas o mecanismo melhor estudado é a super expressão da glicoproteína-P, que é uma proteína de membrana capaz de fazer a extrusão de quimioterápicos para fora de célula. Com isso o objetivo deste estudo é avaliar a sensibilidade das linhagens celulares que expressem (Lucena) ou não (K562) o fenótipo MDR à AFD do pigmento C-FC, extraído da cianobactéria S. platensis, e propor um possível mecanismo de ação. A extração da C-PC foi feita no Laboratorio de Microbiologia e Engenharia de Bioprocesos (FURG). Diferentes concentrações de C-PC (0.025, 0.05, 0.10, 0.20 e 0.40 mg/ml para os testes de PDA da C-PC e 0.05, 0.10, 0.20, 0.40 e 0.60 mg/ml para os testes no escuro) foram usadas. O número de células viáveis foi avaliada imediatamente, 24 h e 48 h após o tratamento com C-PC ou PDA da C-PC através de exclusão por azul de trypan. A concentração de 0.05 mg/ml foi utilizada para determinar o possível papel da Pgp na resposta da linhagem Lucena e a concentração de 0.10 mg/ml foi utilizada nos testes de peroxidação lipídica (LPO), de produção de espécies reativas de oxigênio (ROS) e quantificação de apoptose/necrose. A PDA da CPC causou uma diminuição no número de células viáveis em ambas linhagens K562 (não MDR) e Lucena (MDR), sendo que a linhagem MDR foi menos sensível que a não MDR. Já nos testes realizados no escuro, nenhuma toxicidade foi encontrada para as duas linhagens. Nenhuma alteração na resistência da linhagem Lucena foi encontrada quando o modulador verapamil foi colocado durante o tratamento de APD com C-PC e até às 48h de acompanhamento após o tratamento. Também não foi encontrada diferença significativa de lipoperoxidação (LPO) mas houve uma tendência de aumento na produção de ROS, que foi mais evidente na linhagem K562. Além disso a linhagem Lucena apresentou uma produção basal de ROS significativamente maior que a K562. Nos testes de apoptose/necrose nenhuma diferença foi encontrada entre as células controle e tratadas em ambas linhagens. Os resultados encontrados neste estudo sugerem que a C-PC possa ser um potente agente fotosensibilizante, tanto para linhagens não MDR quanto para linhagens MDR e também que o mecanismo tipo II esteja envolvido em maior parte no efeito observado na PDA da C-PC, mas uma menor participação do mecanismo tipo I não pode ser descartada. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphorus, as phosphate, is frequently found as a constituent of many of the world iron resources. Phosphorus is an extremely harmful element found in iron ore used as a raw material in the steelmaking process because it will affect the quality of iron and steel products. Allowable phosphorus concentration in high quality steel is usually less than 0.08%. Dephosphorization of iron ore has been studied for a long time. Although there are described physical beneficiation and chemical leaching processes, involving inorganic acids, to reduce phosphorus content of iron ores, these processes have several limitations such as poor recovery, require high energy quantity, capital costs and cause environmental pollution. Use of microorganisms in leaching of mineral ores is gaining importance due to the implementation of stricter environmental rules. Microbes convert metal compounds into their water soluble forms and are biocatalysts of leaching processes. Biotechnology is considered as an eco-friendly, promising, and revolutionary solution to these problems. Microorganisms play a critical role in natural phosphorus cycle and the process of phosphate solubilization by microorganisms has been known for many years. This study was performed to analyze the possibility of using bioleaching as a process for the dephosphorization of an iron ore from Northeast of Portugal. For bioleaching, Acidithiobacillus ferrooxidans bacterium were used. For this study two experiments were done with different conditions, which lasts 6 weeks for first experiment and 5 weeks for second experiment. From the result of these preliminary studies, it was observed that for first experiment 6.2 % and for second experiment 3.7 % of phosphorus was removed from iron ore.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this trial was to evaluate the nutritional value, fermentation profile and dry matter losses of Palisadegrass silages ensiled with either dried citrus pulp, soybean hulls, chemical or microbial additives. The trial was carried out in a completely randomized experimental design and in a factorial arrangement (3 x 5), with three dry matter levels (wet forage or forage ensiled with pelleted citrus pulp or pelleted soybean hulls) and five additives (without or with the presence of bacterial inoculants or the addition of: sodium benzoate, formic acid in the concentration of 62% or 44%), totalizing 15 treatments and 60 experimental silos. The variables analyzed were: nutritional value, losses due to gases and effluents, and dry matter recovery. The use of dried citrus pulp or soybean hulls at the ensiling time increased the dry matter content (29.4 and 28,9%) and decreased the effluent production (4.1 and 3.8 kg/t of fresh matter), also providing fermentable substrate to microorganisms, resulting in increased fermentation coefficient and digestibility of silages. The use of formic acid resulted in silages with higher digestibility and increased water-soluble carbohydrates and crude protein content. This additive was also effective in reducing the losses due to gases and, as a result, increased the total dry matter recovery. The treatment containing homolactic bacteria showed similar trend of increasing the digestibility and reducing the losses due to gases. The use of sodium benzoate was less effective in altering the fermentation pattern of tropical silages. The nutritional value and total dry matter losses of silages ensiled without additives can be considered satisfactory. However, wet forage ensiled with dried citrus pulp and, mainly, with soybeans hulls showed the best results. Treatments containing formic acid had a beneficial effect on the fermentation profile of tropical grass silages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia produces a water-soluble blue-pigment named marennine of economic interest (e.g. in aquaculture for the greening of oysters). Up to date the studies devoted to ecological conditions under which this microalga develops never took into account the bacterial-H. ostrearia relationships. In this study the bacterial community was analysed by PCR-TTGE before and after H. ostrearia isolation cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community. The bacterial structure of the phycosphere differed strongly from that of the bulk sediment. The similarity between bacteria recovered from the biofilm and the suspended bacteria did not exceed 10% (vs. > 90% amongst biofilms). The differences in genetic fingerprints, more especially high between two H. ostrearia isolates showed also the highest differences in the bacterial structure as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture. At the scale of a culture cycle in laboratory conditions, the bacterial community was specific to the growth stage. When H. ostrearia was subcultured for 9 months, a shift in the bacterial structure was shown from 3-months subculturing and the bacterial structure stabilized afterwards (70-86% similarities). A first insight of the relationships between H. ostrearia and its surrounding bacteria was shown for a better understanding of the ecological feature of this diatom.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia [1] produces a water-soluble blue-pigment named marennine [2] of economic interest. But the lack of knowledge of the ecological conditions, under which this microalga develops in its natural ecosystem, more especially bacteria H. ostrearia interactions, prevents any optimization of its culture in well-controlled conditions. The structure of the bacterial community was analyzed by PCR-TTGE before and after the isolation of H. ostrearia cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community at two time-scales. The differences in genetic fingerprints, more especially high between two H. ostrearia isolates (HO-R and HO-BM) showed also the highest differences in the bacterial structure [3] as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture Here we present a Q-TOF LC/MS metabolomic fingerprinting approach [3]: - to investigate differential metabolites of axenic versus non axenic H. ostrearia cultures. - to focus on the specific metabolites of a bacterial surrounding associated with the activation or inhibition of the microalga growing. The Agilent suite of data processing software makes feature finding, statistical analysis, and identification easier. This enables rapid transformation of complex raw data into biologically relevant metabolite information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia [1] produces a water-soluble blue-pigment named marennine [2] of economic interest. But the lack of knowledge of the ecological conditions, under which this microalga develops in its natural ecosystem, more especially bacteria H. ostrearia interactions, prevents any optimization of its culture in well-controlled conditions. The structure of the bacterial community was analyzed by PCR-TTGE before and after the isolation of H. ostrearia cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community at two time-scales. The differences in genetic fingerprints, more especially high between two H. ostrearia isolates (HO-R and HO-BM) showed also the highest differences in the bacterial structure [3] as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture Here we present a Q-TOF LC/MS metabolomic fingerprinting approach [3]: - to investigate differential metabolites of axenic versus non axenic H. ostrearia cultures. - to focus on the specific metabolites of a bacterial surrounding associated with the activation or inhibition of the microalga growing. The Agilent suite of data processing software makes feature finding, statistical analysis, and identification easier. This enables rapid transformation of complex raw data into biologically relevant metabolite information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avaliou-se o efeito da inclusão de aditivos na ensilagem de cana-de-açúcar (Saccharum officinarum L.) sobre a composição químico-bromatológica das silagens, o comportamento ingestivo, o consumo voluntário e a digestibilidade em bovinos de corte. Utilizaram-se cinco novilhos da raça Nelore providos de cânula ruminal, alocados em delineamento quadrado latino 5 ´ 5 e alimentados com dietas com 65% de volumoso na MS. Foram avaliadas cinco silagens (base úmida): controle - cana-de-açúcar sem aditivos; uréia - cana-de-açúcar + 0,5% uréia; benzoato - cana-de-açúcar + 0,1% de benzoato de sódio; LP - cana-de-açúcar inoculada com Lactobacillus plantarum (1 ´ 10(6) ufc/g MV); LB - cana-de-açúcar inoculada com L. buchneri (3,6 ´ 10(5) ufc/g forragem). A forragem foi armazenada em silos do tipo poço por 90 dias antes do fornecimento aos animais. A composição químico-bromatológica da cana-de-açúcar foi alterada após a ensilagem, em relação à cana-de-açúcar original, com redução no teor de carboidratos solúveis e na digestibilidade in vitro e elevação relativa nos teores de FDN e FDA. Os teores de etanol (0,30% da MS) e ácidos orgânicos (0,99% de ácido lático e 2,31% de acético) foram baixos e semelhantes entre as silagens. Os aditivos aplicados na ensilagem não promoveram alterações no consumo e na digestibilidade aparente da MS (7,2 kg/dia e 63,6%, respectivamente). O comportamento ingestivo dos animais também não foi alterado, com tempos médios de 230,6; 519,6 e 672,8 minutos/dia despendidos com ingestão de ração, ruminação e ócio, respectivamente. Os aditivos acrescidos à cana-de-açúcar promoveram pequenas alterações na maioria das variáveis avaliadas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bupivacaine (BVC; S75-R25, NovaBupiwater-soluble linear polysaccharide. The present study reports the development of alginate/bis(2-ethylhexyl) sulfosuccinate (AOT) and alginate/chitosan nanoparticle formulations containing BVC (0.5%). The amounts of BVC associated in the alginate/AOT and alginate/chitosan nanoparticles were 87 +/- 1.5 and 76 +/- 0.9%, respectively. The average diameters and zeta potentials of the nanoparticles were measured for 30 days, and the results demonstrated the good stability of these particles in solution. The in vitro release kinetics showed a different behavior for the release profile of BVC in solution, compared with BVC-loaded alginate nanoparticles. In vitro and in vivo assays showed that alginate-chitosan BVC (BVC(ALG-CHIT)) and alginate-AOT BVC (BVC(ALG-AOT)) presented low cytotoxicity in 3T3-fibroblasts, enhanced the intensity, and prolonged the duration of motor and sensory blockades in a sciatic nerve blockade model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ion channels are a large class of integral membrane proteins that allow for the diffusion of ions across a cellular membrane and are found in all forms of life. Pentameric ligand-gated ion channels (pLGICs) comprise a large family of proteins that include the nicotinic acetylcholine receptor (nAChR) and the γ-aminobutyric acid (GABA) receptor. These ion channels are responsible for the fast synaptic transmission that occurs in humans and as a result are of fundamental biological importance. pLGICs bind ligands (neurotransmitters), and upon ligand-binding undergo activation. The activation event causes an ion channel to enter a new physical state that is able to conduct ions. Ion channels allow for the flux of ions across the membrane through a pore that is formed upon ion channel activation. For pLGICs to function properly both ligand-binding and ion channel activation must occur. The ligand-binding event has been studied extensively over the past few decades, and a detailed mechanism of binding has emerged. During activation the ion channel must undergo structural rearrangements that allow the protein to enter a conformation in which ions can flow through. Despite this great and ubiquitous importance, a fundamental understanding of the ion channel activation mechanism and kinetics, as well as concomitant structural arrangements, remains elusive.

This dissertation describes efforts that have been made to temporally control the activation of ligand-gated ion channels. Temporal control of ion channel activation provides a means by which to activate ion channels when desired. The majority of this work examines the use of light to activate ion channels. Several photocages were examined in this thesis; photocages are molecules that release a ligand under irradiation, and, for the work described here, the released ligand then activates the ion channel. First, a new water-soluble photoacid was developed for the activation of proton-sensitive ion channels. Activation of acid-sensing ion channels, ASIC2a and GLIC, was observed only upon irradiation. Next, a variety of Ru2+ photocages were also developed for the release of amine ligands. The Ru2+ systems interacted in a deleterious manner with a representative subset of biologically essential ion channels. The rapid mixing of ion channels with agonist was also examined. A detection system was built to monitor ion channels activation in the rapid mixing experiments. I have shown that liposomes, and functionally-reconstituted ELIC, are not destroyed during the mixing process. The work presented here provides the means to deliver agonist to ligand-gated ion channels in a controlled fashion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vast montado areas are threatened by degradation, as the result of a long history of land use changes. Since improved pastures have been installed aiming soil quality improvement and system sustainability, it is crucial to evaluate the effects of these management changes on soil organic matter status and soil biological activity, as soil quality indicators. Therefore, a 35-yr old improved pasture and a natural pasture were studied, considering areas beneath tree canopy and in the open. Total organic C, total N, hot water soluble (HWS) and particulate (POM) C, microbial biomass C (MBC) and N (MBN), C mineralization rate (CMR) and net N mineralization rate (NMR) were determined. In addition, for a 1-yr period, soil β-glucosidase, urease, proteases and acid phosphomonoesterase were periodically determined. Improved pasture promoted the increase of soil C and N through POM-C increment, particularly beneath the trees canopies. The two study pastures did not show differences regarding soil microbial biomass, but variations in CMR, HWS-C and N availability (proteases and urease activities) suggest divergent soil microbial communities. Tree regulator role on C, N and P transformation processes in soil was confirmed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and with varying fluorescent quantum yields. I synthesized a highly water soluble BOIDPY-based turn-on fluorescent probe for endogenous nitric oxide. I also synthesized a series of cell membrane permeable near infrared (NIR) pH activatable fluorescent probes for lysosomal pH sensing. Fluorescent dyes are molecular tools for designing fluorescent bio imaging probes. This prompted me to design and synthesize a hybrid fluorescent dye with a functionalizable chlorine atom and tested the chlorine re-activity for fluorescent probe design. Carbohydrate and protein interactions are key for many biological processes, such as viral and bacterial infections, cell recognition and adhesion, and immune response. Among several analytical techniques aimed to study these interactions, electrochemical bio sensing is more efficient due to its low cost, ease of operation, and possibility for miniaturization. During my Ph.D., I synthesized mannose bearing aniline molecule which is successfully tested as electrochemical bio sensor. A Ferrocene-mannose conjugate with an anchoring group is synthesized, which can be used as a potential electrochemical biosensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hotembossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the substantial body of research investigating the use of liposomes, niosomes and other bilayer vesicles for drug delivery, the translation of these systems into licensed products remains limited. Indeed, recent shortages in the supply of liposomal products demonstrate the need for new scalable production methods for liposomes. Therefore, the aim of our research has been to consider the application of microfluidics in the manufacture of liposomes containing either or both a water soluble and a lipid soluble drug to promote co-delivery of drugs. For the first time, we demonstrate the entrapment of a hydrophilic and a lipophilic drug (metformin and glipizide respectively) both individually, and in combination, using a scalable microfluidics manufacturing system. In terms of the operating parameters, the choice of solvents, lipid concentration and aqueous:solvent ratio all impact on liposome size with vesicle diameter ranging from ∼90 to 300 nm. In terms of drug loading, microfluidics production promoted high loading within ∼100 nm vesicles for both the water soluble drug (20–25% of initial amount added) and the bilayer embedded drug (40–42% of initial amount added) with co-loading of the drugs making no impact on entrapment efficacy. However, co-loading of glipizide and metformin within the same liposome formulation did impact on the drug release profiles; in both instances the presence of both drugs in the one formulation promoted faster (up to 2 fold) release compared to liposomes containing a single drug alone. Overall, these results demonstrate the application of microfluidics to prepare liposomal systems incorporating either or both an aqueous soluble drug and a bilayer loaded drug.