981 resultados para Voltage-sensitive Sodium Channels
Resumo:
BACKGROUND AND PURPOSE The P2X receptor family consists of seven subunit types - P2X1-P2X7. All but P2X6 are able to assemble as homotrimers. In addition, various subunit permutations have been reported to form heterotrimers. Evidence for heterotrimer formation includes co-localization, co-immunoprecipitation and the generation of receptors with novel functional properties; however, direct structural evidence for heteromer formation, such as chemical cross-linking and single-molecule imaging, is available in only a few cases. Here we examined the nature of the interaction between two pairs of subunits - P2X2 and P2X4, and P2X4 and P2X7. EXPERIMENTAL APPROACH We used several experimental approaches, including in situ proximity ligation, co-immunoprecipitation, co-isolation on affinity beads, chemical cross-linking and atomic force microscopy (AFM) imaging. KEY RESULTS Both pairs of subunits co-localize upon co-transfection, interact intimately within cells, and can be co-immunoprecipitated and co-isolated from cell extracts. Despite this, chemical cross-linking failed to show evidence for heteromer formation. AFM imaging of isolated receptors showed that all three subunits had the propensity to form receptor dimers. This self-association is likely to account for the observed close interaction between the subunit pairs, in the absence of true heteromer formation. CONCLUSIONS AND IMPLICATIONS We conclude that both pairs of receptors interact in the form of distinct homomers. We urge caution in the interpretation of biochemical evidence indicating heteromer formation in other cases.
Resumo:
Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3 M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin 11 generation raised by low concentration of captopril in the adult offspring. Interestingly. perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Neuropathic pain is a chronic disease resulting from dysfunction of the nervous system often due to peripheral nerve injury. Hypersensitivity to sensory Stimuli (mechanical, thermal or chemical) is a common source of pain in patients and ion channels involved in detecting these Stimuli are possible candidates for inducing and/or maintaining the pain. Transient receptor potential (TRP) channels expressed on nociceptors respond to different sensory stimuli and a few of them have been studied previously in the models of neuropathic pain. Using real-time PCR for quantification of all known TRP channels we identified several TRP channels, which have not been associated with nociception OF neuropathic pain before, to be expressed in the DRG and to be differentially regulated after spared nerve injury (SNI). Of all TRP channel members, TRPML3 showed the most dramatic change in animals exhibiting neuropathic pain behaviour compared to control animals. fit situ hybridisation showed a widespread increase of expression ill neurons of small, medium and large cell sizes, indicating expression ill multiple subtypes. Co-localisation of TRPML3 with CGRP, NF200 and IB4 staining confirmed a broad Subtype distribution. Expression studies during development showed that TRPML3 is all embryonic channel that is induced upon nerve injury in three different nerve injury models investigated. Thus. the current results link for the first time a re-expression of TRPML3 with the development of neuropathic pain conditions. In addition, decreased mRNA levels after SNI were seen for TRPM6, TRPM8, TRPV1, TRPA1, TRPC3, TRPC4 and TRPC5. (C) 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Production and secretion of testosterone in Leydig cells are mainly controlled by the luteinizing hormone (LH). Biochemical evidences suggest that the activity of Cl(-) ions can modulate the steroidogenic process, but the specific ion channels involved are not known. Here, we extend the characterization of Cl(-) channels in mice Leydig cells (50-60 days old) by describing volume- activated Cl(-) currents (I(Cl,swell)). The amplitude of I(Cl,swell) is dependent on the osmotic gradient across the cell membrane, with an apparent EC(50) of similar to 75 mOsm. These currents display the typical biophysical signature of volume- activated anion channels (VRAC): dependence on intracellular ATP, outward rectification, inactivation at positive potentials, and selectivity sequence (I(-)>Cl(-)>F(-)). Staurosporine (200 nM) did not block the activation of I(Cl), swell. The block induced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB; 128 mu M), SITS (200 mu M), ATP (500 mu M), pyridoxalphosphate-6- azophenyl-2`,4`-disulfonate (PPADS; 100 mu M), and Suramin (10 mu M) were described by the permeant blocker model with apparent dissociation constant at 0 mV K(d)(0) and fractional distance of the binding site (delta) of 334 mu M and 47%, 880 mu M and 35%, 2,100 mu M and 49%, 188 mu M and 27%, and 66.5 mu M and 49%, respectively. These numbers were derived from the peak value of the currents. We conclude that ICl, swell in Leydig cells are activated independently of purinergic stimulation, that Suramin and PPADS block these currents by a direct interaction with VRAC and that ATP is able to permeate this channel.
Resumo:
Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.
Resumo:
Background: High sodium salicylate doses can cause reversible hearing loss and tinnitus, possibly due to reduced outer hair cell electromotility. Sodium salicylate is known to alter outer hair cell structure and function. This study determined the reversibility and cochlear recovery time after administration of an ototoxic sodium salicylate dose to guinea pigs with normal cochlear function. Study design: Prospective experimental investigation. Methods: All animals received a single 500 mg sodium salicylate dose, but with different durations of action. Function was evaluated before drug administration and immediately before sacrifice. Cochleae were processed and viewed using scanning electron microscopy. Results: Changes in outer hair cell function were observed to be present 2 hours after drug administration, with recovery of normal anatomy beginning after 24 hours. Subsequently, derangement and distortion of cilia reduced, with effects predominantly in row three. At 168 hours, cilia were near-normal but with mild distortions which interfered with normal cochlear physiology. Conclusions: Ciliary changes persisted for up to 168 hours after ototoxic sodium salicylate administration.
Resumo:
Dietary nitrite and nitrate are important sources of nitric oxide (NO). However, the use of nitrite as an antihypertensive drug may be limited by increased oxidative stress associated with hypertension. We evaluated the antihypertensive effects of sodium nitrite given in drinking water for 4 weeks in two-kidney one-clip (21(1 C) hypertensive rats and the effects induced by nitrite on NO bioavailability and oxidative stress. We found that, even under the increased oxidative stress conditions present in 2K1C hypertension, nitrite reduced systolic blood pressure in a dose-dependent manner. Whereas treatment with nitrite did not significantly change plasma nitrite concentrations in 2K1C rats, it increased plasma nitrate levels significantly. Surprisingly, nitrite treatment exerted antioxidant effects in both hypertensive and sham-normotensive control rats. A series of in vitro experiments was carried out to show that the antioxidant effects induced by nitrite do not involve direct antioxidant effects or xanthine oxidase activity inhibition. Conversely, nitrite decreased vascular NADPH oxidase activity. Taken together, our results show for the first time that nitrite has antihypertensive effects in 2K1C hypertensive rats, which may be due to its antioxidant properties resulting from vascular NADPH oxidase activity inhibition. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Prototheca zopfii has been considered one of the most important causes of environmental mastitis in Brazil. These algae are refractory to conventional therapy and cause great damage to the mammary gland. The present study evaluated the in vitro algaecide effect of sodium hypochlorite and iodine based antiseptics on 27 P. zopfii strains isolated from the milk of cattle. Low concentrations of sodium hypochlorite (0.0390625-0.15625%) and iodine (0.15625-0.625%) were effective against the isolates. These antiseptics may be recommended for hygiene routines, pre and postdipping and cauterization of bovine mammary glands infected by P. zopfii. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) laser compared with traditional treatment on dentin permeability to calcitonin and sodium alendronate. Forty bovine roots were sectioned and divided into eight groups. Groups 1 and 2 (G1/G2) were immersed in saline solution; G1T/G2T were immersed in ethylene diamine tetra-acetic acid plus sodium lauryl ether sulfate (EDTA-T) and sodium hypochlorite (NaOCl); G1I/G2I were irradiated with Er:YAG laser (2.94 mu m, 6 Hz, 40.4 J/cm(2)); G1TI/G2TI were immersed in EDTA-T, NaOCl and subjected to Er:YAG irradiation. After 4 h the radioactivity of the saline solution was measured. Statistical analysis revealed a significant difference (P < 0.05) when the groups treated with EDTA-T and NaOCl followed by Er:YAG laser irradiation were compared with the groups treated with EDTA-T only and with the groups that received no treatment. Er:YAG laser associated with traditional procedures significantly increased the diffusion of calcitonin and sodium alendronate through dentin. All groups showed calcitonin and sodium alendronate diffusion.
Resumo:
Aim To report clinical complications (pain, necrotic gingival tissue and bone sequestration) resulting from accidental injection of sodium hypochlorite. Summary Root canal treatment is a routine clinical procedure with few reported complications. Sodium hypochlorite (NaOCl) is commonly used as an irrigant during the procedure because of its tissue-dissolving, antibacterial and lubricating properties. This paper presents a case in which accidental injection of sodium hypochlorite into the lingual gingiva of a female patient caused gingival and bone necrosis. Surgical intervention was required. Key learning points Sodium hypochlorite is dangerous if injected into the tissues. The presentation of sodium hypochlorite in glass, anaesthetic type cartridges is potentially dangerous, and should be condemned. All healthcare workers should check carefully the contents of any syringe before injecting into patients.
Resumo:
Introduction: This study compared the combined use of sodium hypochlorite (NaOCl) and chlorhexidine (CXH) with citric acid and CXH on dentinal permeability and precipitate formation. Methods: Thirty-four upper anterior teeth were prepared by rotary instrumentation and NaOCl. The root canal surfaces were conditioned for smear layer removal using 15% citric acid solution under ultrasonic activation and a final wash with distilled water. All teeth were dried, and 30 specimens were randomly divided into three equal groups as follows: positive control group (PC), no irrigation; 15% citric acid + 2% CHX group (CA + CHX); and 1% NaOCl + 2% CHX group (NaOCl + CHX). All roots were immersed in a 0.2% Rhodamine B solution for 24 hours. One-millimeter-thick slices from the cementum-enamel junction were scanned at 400 dpi and analyzed using the software ImageLab (LIDO-USP, Sao Paulo, Brazil) for the assessment of leakage in percentage. For scanning electron microscopy analysis, four teeth, irrigated for NaOCl + CHX samples, were split in half, and each third was evaluated at 1,000x and 5,000x (at the precipitate). Results: Using the analysis of variance test followed by the Bonferroni comparison method, no statistical differences between groups were found when analyzed at the cervical and medium thirds. At the apical third, differences between the PC and NaOCl + CHX (p<0.05) and CA + CHX and NaOCl + CHX could be seen (p < 0.05). Conclusion: The combination of 1% NaOCl and 2% CHX solutions results in the formation of a flocculate precipitate that acts as a chemical smear layer reducing the dentinal permeability in the apical third. (J Endod 2010;36:847-850)
Resumo:
This study evaluated in vitro commercial desensitizing toothpastes with respect to the prevention of erosion and explored the effect of their agents alone or in combination with fluoride. Bovine enamel blocks were randomly allocated to five groups of 20 and exposed to: Sensodyne ProNamel (1,425 ppm F as NaF, 5% KNO(3)), Sensodyne Original (no fluoride, 10% SrCl(2)), Colgate Sensitive (1,450 ppm F as sodium monofluorophosphate, 5% K citrate), Crest (fluoride-only toothpaste, 1,100 ppm F as NaF) and water (negative control). A second experiment was conducted with experimental dentifrices containing fluoride (NaF, 1,100 ppm F), 10% SrCl(2), 5% KNO(3) or 5% K citrate alone or the latter three combined with F. The samples were submitted to four cycles, alternating demineralization (cola, 10 min) and remineralization (artificial saliva, 1 h). Before and between cyclic de- and remineralization, blocks were treated with slurries of the respective toothpastes or water (1 min). Erosive tissue loss was analyzed by profilometry. Data were analyzed by Kruskal-Wallis and Dunn`s tests (p < 0.05). The mean erosion depth (+/- SE, mu m) was significantly less for Colgate Sensitive (0.04 +/- 0.00), Sensodyne Original (0.06 +/- 0.01) and Crest (0.07 +/- 0.01) than for Sensodyne ProNamel (2.36 +/- 0.25) or water (2.92 +/- 0.24), which did not significantly differ from each other. Both F and the desensitizing agents alone reduced erosion, but no additive effect was found. In addition, the combination of F and KNO(3) did not reduce erosion. These in vitro results suggest that the presence of fluoride or desensitizing substances in toothpastes, alone or in combination, can reduce erosion of enamel, but this is not valid for all the formulations. Copyright (C) 2010 S. Karger AG, Basel