947 resultados para Virtual state energy
Resumo:
Objective Underreporting of energy intake is prevalent in food surveys, but there is controversy about which dietary assessment method provides greater underreporting rates. Our objective is to compare validity of self-reported energy intake obtained by three dietary assessment methods with total energy expenditure (TEE) obtained by doubly labeled water (DLW) among Brazilian women. Design We used a cross-sectional study. Subjects/setting Sixty-five females aged 18 to 57 years (28 normal-weight, 10 over-weight, and 27 obese) were recruited from two universities to participate. Main outcome measures TEE determined by DLW, energy intake estimated by three 24-hour recalls, 3-day food record, and a food frequency questionnaire (FFQ). Statistical analyses performed Regression and analysis of variance with repeated measures compared TEE and energy intake values, and energy intake-to-TEE ratios and energy intake-TEE values between dietary assessment methods. Bland and Altman plots were provided for each method. chi(2) test compared proportion of underreporters between the methods. Results Mean TEE was 2,622 kcal (standard deviation [SD] =490 kcal), while mean energy intake was 2,078 kcal (SD=430 kcal) for the diet recalls; 2,044 kcal (SD=479 kcal) for the food record and 1,984 kcal (SD=832 kcal) for the FFQ (all energy intake values significantly differed from TEE; P<0.0001). Bland and Altman plots indicated great dispersion, negative mean differences between measurements, and wide limits of agreement. Obese subjects underreported more than normal-weight subjects in the diet recalls and in the food records, but not in the FFQ. Years of education, income and ethnicity were associated with reporting accuracy. Conclusions The FFQ produced greater under- and overestimation of energy intake. Underreporting of energy intake is a serious and prevalent error in dietary self-reports provided by Brazilian women, as has been described in studies conducted in developed countries.
Resumo:
The aim of the present study was to determine whether under-reporting rates vary between dietary pattern Clusters. Subjects were sixty-five Brazilian women. During 3 weeks, anthropometric data were collected. total energy expenditure (TEE) was determined by the doubly labelled water method and diet Was Measured. Energy intake (El) and the daily frequency of consumption per 1000 kJ of twenty-two food groups were obtained from a FFQ. These frequencies were entered into a Cluster analysis procedure in order to obtain dietary patterns. Under-reporters were defined Lis those who did not lose more than 1 kg of body weight during the study and presented EI:TEE less than 0.82. Three dietary pattern clusters were identified and named according to their most recurrent food groups: sweet foods (SW). starchy foods (ST) and health), (H). Subjects from the healthy cluster had the lowest mean EI:TEE (SW = 0.86, ST = 0.71 and H = 0.58: P = 0.003) and EI - TEE (SW = -0.49 MJ, ST = - 3.20 MJ and H = -5.09 MJ; P = 0.008). The proportion of Under-reporters was 45.2 (95 % CI 35.5, 55.0) % in the SW Cluster: 58.3 (95 % CI 48.6, 68.0) % in the ST Cluster and 70.0 (95 % CI 61.0, 79) % in the H cluster (P=0.34). Thus, in Brazilian women, Under-reporting of El is not uniformly distributed among, dietary pattern clusters and tends to be more severe among subjects from the healthy cluster. This cluster is more consistent with both dietary guidelines and with what lay individuals usually consider `healthy eating`.
Resumo:
In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.
Resumo:
The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions, it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in nondimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples. [DOI: 10.1115/1.4003542]
Resumo:
The three poikilophydric and homoiochlorophyllous moss species Campylopus savannarum (C. Muell.) Mitt., Racocarpus fontinaloides (C. Muell.) Par. and Ptychomitrium vaginatum Besch. grow on sun-exposed rocks of a tropical inselberg in Brazil subject to regular drying and wetting cycles. Effective photo-oxidative protection in the light-adapted desiccated state in all three species is achieved by a reduction of ground chlorophyll fluorescence, F, to almost zero. Upon rewatering, the kinetics of the recovery of F in air dry cushions to higher values is very fast in the first 5min, but more than 80min are needed until an equilibrium is reached gradually. The kinetics were not different between the three species. The three moss species, have a distinct niche occupation and form a characteristic zonation around soil vegetation islands on the rock outcrops, where C. savannarum and R. fontinaloides form an inner and outer belt, respectively, around vegetation islands and P vaginatum occurs as small isolated cushions on bare rock. However, they were not distinguished by the reduction of F in the dry state and the rewetting recovery kinetics and only slightly different in their photosynthetic capacity. Stable isotope ratios (delta C-13, delta N-15) indicate that liquid films of water limiting diffusion of CO2 are important in determining carbon acquisition and suggest that limitation of CO2 fixation by water films must be more pronounced over time in P vaginatum than in the latter species. This is determined by both the micro site occupied and the form of the moss cushions. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]
Resumo:
The importance of the HSO(2) system in atmospheric and combustion chemistry has motivated several works dedicated to the study of associated structures and chemical reactions. Nevertheless controversy still exists in connection with the reaction SH + O(2) -> H + SO(2) and also related to the role of the HSOO isomers in the potential energy surface (PES). Here we report high-level ab initio calculation for the electronic ground state of the HSO(2) system. Energetic, geometric, and frequency properties for the major stationary states of the PES are reported at the same level of calculations:,CASPT2/aug-cc-pV(T+d)Z. This study introduces three new stationary points (two saddle points and one minimum). These structures allow the connection of the skewed HSOOs and the HSO(2) minima defining new reaction paths for SH + O(2) -> H + SO(2) and SH + O(2) -> OH + SO. In addition, the location of the HSOO isomers in the reaction pathways have been clarified.
Resumo:
We present a rigorous, regularization-independent local quantum field theoretic treatment of the Casimir effect for a quantum scalar field of mass mu not equal 0 which yields closed form expressions for the energy density and pressure. As an application we show that there exist special states of the quantum field in which the expectation value of the renormalized energy-momentum tensor is, for any fixed time, independent of the space coordinate and of the perfect fluid form g(mu,nu)rho with rho > 0, thus providing a concrete quantum field theoretic model of the cosmological constant. This rho represents the energy density associated to a state consisting of the vacuum and a certain number of excitations of zero momentum, i.e., the constituents correspond to lowest energy and pressure p <= 0. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Models of dynamical dark energy unavoidably possess fluctuations in the energy density and pressure of that new component. In this paper we estimate the impact of dark energy fluctuations on the number of galaxy clusters in the Universe using a generalization of the spherical collapse model and the Press-Schechter formalism. The observations we consider are several hypothetical Sunyaev-Zel`dovich and weak lensing (shear maps) cluster surveys, with limiting masses similar to ongoing (SPT, DES) as well as future (LSST, Euclid) surveys. Our statistical analysis is performed in a 7-dimensional cosmological parameter space using the Fisher matrix method. We find that, in some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when priors from other standard cosmological probes are included. We also show how dark energy fluctuations can be a nuisance for constraining cosmological parameters with cluster counts, and point to a degeneracy between the parameter that describes dark energy pressure on small scales (the effective sound speed) and the parameters describing its equation of state.
Resumo:
We investigate the influence of ail interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain file general Layser-Irvine equation in the presence of interactions, and find how, in that case. the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data Suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions oil the magnitude and significance of this coupling could be established. (C) 2009 Published by Elsevier B.V.
Resumo:
We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type la supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We propose a model for the antihyperon polarization in high-energy proton-nucleus inclusive reactions, based on the final-state interactions between the antihyperons and other produced particles (predominantly pions). To formulate this idea, we use the previously obtained low-energy pion-(anti-)hyperon interaction using effective chiral Lagrangians, and a hydrodynamic parametrization of the background matter, which expands and decouples at a certain freezeout temperature.
Resumo:
We study the beam-energy and system-size dependence of phi meson production (using the hadronic decay mode phi -> K(+) K(-)) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at root s(NN) = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented in this Letter are from mid-rapidity (vertical bar y vertical bar < 0.5) for 0.4 < p(T) < 5 GeV/c. At a given beam energy, the transverse momentum distributions for phi mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The phi meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions. The enhancement for phi mesons lies between strange hadrons having net strangeness = 1 (K(-) and <(A)over bar>) and net strangeness = 2 (Xi). The enhancement for phi mesons is observed to be higher at root s(NN) = 200 GeV compared to 62.4 GeV. These observations for the produced phi(s (s) over bar) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
Resumo:
This work reports on the excited-state absorption spectrum of oxidized Cytochrome c (Fe(3+)) dissolved in water, measured with the Z-scan technique with femtosecond laser pulses. The excited-state absorption cross-sections between 460 and 560 nm were determined with the aid of a three-energy-level model. Reverse saturable absorption was observed below 520 nm, while a saturable absorption process occurs in the Q-band, located around 530 nm. Above 560 nm, a competition between saturable absorption and two-photon absorption was inferred. These results show that Cytochrome c presents distinct nonlinear behaviors, which may be useful to study electron transfer chemistry in proteins by one- and two-photon absorption. In addition, owing to these nonlinear optical features, this molecule may be employed in applications involving photodynamics therapy and saturable absorbers. (C) 2009 Elsevier B.V. All rights reserved.