863 resultados para Vertical transmission infectious disease
Resumo:
Background Chlamydia pneumoniae is a widespread pathogen causing upper and lower respiratory tract infections in addition to a range of other diseases in humans and animals. Previous whole genome analyses have focused on four essentially clonal (> 99% identity) C. pneumoniae human genomes (AR39, CWL029, J138 and TW183), providing relatively little insight into strain diversity and evolution of this species. Results We performed individual gene-by-gene comparisons of the recently sequenced C. pneumoniae koala genome and four C. pneumoniae human genomes to identify species-specific genes, and more importantly, to gain an insight into the genetic diversity and evolution of the species. We selected genes dispersed throughout the chromosome, representing genes that were specific to C. pneumoniae, genes with a demonstrated role in chlamydial biology and/or pathogenicity (n = 49), genes encoding nucleotide salvage or amino acid biosynthesis proteins (n = 6), and extrachromosomal elements (9 plasmid and 2 bacteriophage genes). Conclusions We have identified strain-specific differences and targets for detection of C. pneumoniae isolates from both human and animal origin. Such characterisation is necessary for an improved understanding of disease transmission and intervention.
Resumo:
Infertility is a worldwide health problem with one in six couples suffering from this condition and with a major economic burden on the global healthcare industry. Estimates of the current global infertility rate suggest that 15% of couples are infertile (Zegers-Hochschild et al 2009) defined as: (1) failure to conceive after 12 months of unprotected sexual intercourse (i.e. infertility); (2) repeated implantation failure following ART cycles; or (3) recurrent miscarriage without difficulty conceiving (natural conceptions). Tubal factor infertility is among the leading causes of female factor infertility accounting for 7-9.8% of all female factor infertilities. Tubal disease directly causes from 36% to 85% of all cases of female factor infertility in developed and developing nations respectively and is associated with polymicrobial aetiologies. One of the leading global causes of tubal factor infertility is thought to be symptomatic (and asymptomatic in up to 70% cases) infection of the female reproductive tract with the sexually transmitted pathogen, Chlamydia trachomatis. Infection-related damage to the Fallopian tubes caused by Chlamydia accounts for more than 70% of cases of infertility in women from developing nations such as sub-Saharan Africa (Sharma et al 2009). Bacterial vaginosis, a condition associated with increased transmission of sexually transmitted infections including those caused by Neisseria gonorrhoeae and Mycoplasma genitalium is present in two thirds of women with pelvic inflammatory disease (PID). This review will focus on (1) the polymicrobial aetiologies of tubal factor infertility and (2) studies involved in screening for, and treatment and control of, Chlamydial infection to prevent PID and the associated sequelae of Fallopian tube inflammation that may lead to infertility and ectopic pregnancy.
Resumo:
Influenza is a widespread disease occurring in seasonal epidemics, and each year is responsible for up to 500,000 deaths worldwide. Influenza can develop into strains which cause severe symptoms and high mortality rates, and could potentially reach pandemic status if the virus’ properties allow easy transmission. Influenza is transmissible via contact with the virus, either directly (infected people) or indirectly (contaminated objects); via reception of large droplets over short distances (one metre or less); or through inhalation of aerosols containing the virus expelled by infected individuals during respiratory activities, that can remain suspended in the air and travel distances of more than one metre (the aerosol route). Aerosol transmission of viruses involves three stages: production of the droplets containing viruses; transport of the droplets and ability of a virus to remain intact and infectious; and reception of the droplets (via inhalation). Our understanding of the transmission of influenza viruses via the aerosol route is poor, and thus our ability to prevent a widespread outbreak is limited. This study explored the fate of viruses in droplets by investigating the effects of some physical factors on the recovery of both a bacteriophage model and influenza virus. Experiments simulating respiratory droplets were carried out using different types of droplets, generated from a commonly used water-like matrix, and also from an ‘artificial mucous’ matrix which was used to more closely resemble respiratory fluids. To detect viruses in droplets, we used the traditional plaque assay techniques, and also a sensitive, quantitative PCR assay specifically developed for this study. Our results showed that the artificial mucous suspension enhanced the recovery of infectious bacteriophage. We were able to report detection limits of infectious bacteriophage (no bacteriophage was detected by the plaque assay when aerosolised from a suspension of 103 PFU/mL, for three of the four droplet types tested), and that bacteriophage could remain infectious in suspended droplets for up to 20 minutes. We also showed that the nested real-time PCR assay was able to detect the presence of bacteriophage RNA where the plaque assay could not detect any intact particles. Finally, when applying knowledge from the bacteriophage experiments, we reported the quantitative recoveries of influenza viruses in droplets, which were more consistent and stable than we had anticipated. Influenza viruses can be detected up to 20 minutes (after aerosolisation) in suspended aerosols and possibly beyond. It also was detectable from nebulising suspensions with relatively low concentrations of viruses.
Resumo:
In this paper, we apply a simulation based approach for estimating transmission rates of nosocomial pathogens. In particular, the objective is to infer the transmission rate between colonised health-care practitioners and uncolonised patients (and vice versa) solely from routinely collected incidence data. The method, using approximate Bayesian computation, is substantially less computer intensive and easier to implement than likelihood-based approaches we refer to here. We find through replacing the likelihood with a comparison of an efficient summary statistic between observed and simulated data that little is lost in the precision of estimated transmission rates. Furthermore, we investigate the impact of incorporating uncertainty in previously fixed parameters on the precision of the estimated transmission rates.
Resumo:
Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.
Resumo:
Background: Malaria is a significant threat to population health in the border areas of Yunnan Province, China. How to accurately measure malaria transmission is an important issue. This study aimed to examine the role of slide positivity rates (SPR) in malaria transmission in Mengla County, Yunnan Province, China. Methods: Data on annual malaria cases, SPR and socio-economic factors for the period of 1993 to 2008 were obtained from the Center for Disease Control and Prevention (CDC) and the Bureau of Statistics, Mengla, China. Multiple linear regression models were conducted to evaluate the relationship between socio-ecologic factors and malaria incidence. Results: The results show that SPR was significantly positively associated with the malaria incidence rates. The SPR (beta = 1.244, p = 0.000) alone and combination (SPR, beta = 1.326, p < 0.001) with other predictors can explain about 85% and 95% of variation in malaria transmission, respectively. Every 1% increase in SPR corresponded to an increase of 1.76/100,000 in malaria incidence rates. Conclusion: SPR is a strong predictor of malaria transmission, and can be used to improve the planning and implementation of malaria elimination programmes in Mengla and other similar locations. SPR might also be a useful indicator of malaria early warning systems in China.
Resumo:
A Tobacco mosaic virus (TMV)-derived vector was used to express a native Human papillomavirus type 16 (HPV-16) L1 gene in Nicotiana benthamiana by means of infectious in vitro RNA transcripts inoculated onto N. benthamiana plants. HPV-16 L1 protein expression was quantitated by enzyme-linked immunosorbent assays (ELISA) after concentration of the plant extract. We estimated that the L1 product yield was 20-37 μg/kg of fresh leaf material. The L1 protein in the concentrated extract was antigenically characterised using the neutralising and conformation-specific Mabs H16:V5 and H16:E70, which bound to the plant-produced protein. Particles observed by transmission electron microscopy were mainly capsomers but virus-like particles (VLPs) similar to those produced in other systems were also present. Immunisation of rabbits with the concentrated plant extract induced a weak immune response. This is the first report of the successful expression of an HPV L1 gene in plants using a plant virus vector. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
Population-wide associations between loci due to linkage disequilibrium can be used to map quantitative trait loci (QTL) with high resolution. However, spurious associations between markers and QTL can also arise as a consequence of population stratification. Statistical methods that cannot differentiate between loci associations due to linkage disequilibria from those caused in other ways can render false-positive results. The transmission-disequilibrium test (TDT) is a robust test for detecting QTL. The TDT exploits within-family associations that are not affected by population stratification. However, some TDTs are formulated in a rigid-form, with reduced potential applications. In this study we generalize TDT using mixed linear models to allow greater statistical flexibility. Allelic effects are estimated with two independent parameters: one exploiting the robust within-family information and the other the potentially biased between-family information. A significant difference between these two parameters can be used as evidence for spurious association. This methodology was then used to test the effects of the fourth melanocortin receptor (MC4R) on production traits in the pig. The new analyses supported the previously reported results; i.e., the studied polymorphism is either causal of in very strong linkage disequilibrium with the causal mutation, and provided no evidence for spurious association.
Resumo:
Metabolomic profiling offers direct insights into the chemical environment and metabolic pathway activities at sites of human disease. During infection, this environment may receive important contributions from both host and pathogen. Here we apply an untargeted metabolomics approach to identify compounds associated with an E. coli urinary tract infection population. Correlative and structural data from minimally processed samples were obtained using an optimized LC-MS platform capable of resolving ~2300 molecular features. Principal component analysis readily distinguished patient groups and multiple supervised chemometric analyses resolved robust metabolomic shifts between groups. These analyses revealed nine compounds whose provisional structures suggest candidate infection-associated endocrine, catabolic, and lipid pathways. Several of these metabolite signatures may derive from microbial processing of host metabolites. Overall, this study highlights the ability of metabolomic approaches to directly identify compounds encountered by, and produced from, bacterial pathogens within human hosts.
Resumo:
Background & Aims: Peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor, highly expressed in colonic epithelial cells, adipose tissue and macrophages, with an important role in the regulation of inflammatory pathways. The common PPARγ variants C161T and Pro12Ala have recently been associated with Ulcerative Colitis (UC) and an extensive UC phenotype respectively, in a Chinese population. PPARγ Pro12Ala variant homozygotes appear to be protected from the development of Crohn's disease (CD) in European Caucasians. Methods: A case-control study was performed for both variants (CD n=575, UC n=306, Controls n=360) using a polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis in an Australian IBD cohort. A transmission disequilibrium test was also performed using CD trios for the PPARγ C161T variant. Genotype-phenotype analyses were also undertaken. Results: There was no significant difference in genotype distribution data or allele frequency between CD and UC patients and controls. There was no difference in allele transmission for the C161T variant. No significant relationship between the variants and disease location was observed. Conclusions: We were unable to replicate in a Caucasian cohort the recent association between PPARγ C161T and UC or between PPARγ Pro12Ala and an extensive UC phenotype in a Chinese population. There are significant ethnic differences in genetic susceptibility to IBD and its phenotypic expression.
Resumo:
This thesis is a population-based epidemiological study to explore the spatial and temporal pattern of malaria, and to assess the relationship between socio-ecological factors and malaria in Yunnan, China. Geospatial and temporal approaches were applied; the high risk areas of the disease were identified; and socio-ecological drivers of malaria were assessed. These findings will provide important evidence for the control and prevention of malaria in China and other countries with a similar situation of endemic malaria.
Resumo:
Severe fever with thrombocytopenia syndrome (SFTS), an emerging vector-borne disease, is caused by a novel bunyavirus belonging to the genus Phlebovirus [1, 2]. SFTS infections can be life-threatening and are characterized by sudden onset of fever, thrombocytopenia, gastrointestinal symptoms, and leukocytopenia. The tick Haemaphysalis longicornis is generally considered to be the vector of SFTS, which is widely distributed in China [2]. Person-to-person transmission through direct contact with contaminated blood has also been reported as a possible means of SFTS transmission [3–5]. Currently, there is no specific treatment other than supportive care [6]...