899 resultados para Velázquez, Diego, 1599-1660.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stiffener is one of the major components of aircraft structures to increase the load carrying capacity. Damage in the stiffener, mostly in the form of crack is an unavoidable problem in aerospace structures. Stiffener is bonded to the inner side of the aircraft panel which is not accessible for immediate inspection. A sensor-actuator network can be placed on the outer side of the panel that is accessible. Ultrasonic lamb waves are transmitted through stiffener using the sensoractuator network for detecting the presence of damages. The sensor-actuator network is placed on both halves of the stiffened section on the accessible surface of the plate. Detecting damage in stiffener by using this technique has significant potential for SHM technology. One of the major objectives of the present work is to determine the smallest detectable crack on the stiffener using the proposed technique. Wavelet based damage parameter correlation studies are carried out. In the proposed scheme, with increase in the damage size along the stiffener, it is found that the amplitude of the received signal decreases monotonically. The advantage of this technique is that the stiffened panels need not be disassembled in a realistic deployment of SHM system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transonic flutter dip of an aeroelastic system is primarily caused by compressibility of the flowing fluid. Viscous effects are not dominant in the pre-transonic dip region. In fact, an Euler solver can predict this flutter boundary with considerable accuracy. However with an increase in Mach number the shock moves towards the trailing edge causing shock induced separation. This shock-boundary layer interaction changes the flutter boundary in the transonic and post-transonic dip region significantly. We discuss the effect of viscosity in changing the flutter boundary in the post-transonic dip region using a RANS solver coupled to a two-degree of freedom model of the structural dynamics of a wing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic strain sensing performance of the large area PVDF with Inter Digital Electrodes (IDE) is studied in this work. Procedure to obtain IDE on a beta-phase PVDF is explained. PVDF film with IDE is bonded on a plate structure and is characterized for its directional sensitivity at different frequencies. Guided waves are induced on the IDE-PVDF sensor from different directions by placing a piezoelectric wafer actuator at different angles. Strain induced on the IDE-PVDF sensor by the guided waves in estimated by using a Laser Doppler Vibrometer (LDV) and a wave propagation model. Using measured voltage response from IDE-PVDF sensor and the strain measurements from LDV the piezoelectric coefficient is estimated in various directions. The variation of 11 e at different angles shows directional sensitivity of the IDE-PVDF sensor to the incident guided waves. The present study provides an effective technique to characterize thin film piezoelectric sensors for ultrasonic strain sensing at very high frequencies of 200 kHz. Often frequency of the guided wave is changed to alter the wavelength to interrogate damages of different sizes in Structural Health Monitoring (SHM) applications. The unique property of directional sensitivity combined with frequency tunability makes the IDE-PVDF sensor most suitable for SHM of structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and non-invasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phonon mode is excited from one end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wing morphing is one of the emerging methodology towards improving aerodynamic efficiency of flight vehicle structures. In this paper a morphing structural element is designed and studied which has its origin in the well known chiral structures. The new aspect of design and functionality explored in this paper is that the chiral cell is actuated using thermal Shape Memory Alloy (SMA) actuator wires to provide directional motion. Such structure utilizes the potential of different actuations concepts based on actuator embedded in the chiral structure skin. This paper describes a new class of chiral cell structure with integrated SMA wire for actuation. Chiral topological constructs are obtained by considering passive and active load path decoupling and sub-optimal shape changes. Single cell of chiral honeycomb with actuators are analyzed using finite element simulation results and experiments. To this end, a multi-cell plan-form is characterized showing interesting possibilities in structural morphing applications. The applicability of the developed chiral cell to flexible wing skin, variable stiffness based design and controlling longitudinal-to-transverse stiffness ratio are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.