951 resultados para Vehicle Damage.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(-)-∆9-Tetrahydrocannabinol (∆9-THC), a psychoactive component of marijuana, has been reported to induce oxidative damage in vivo and in vitro. In this study, we administered ∆9-THC to healthy C57BL/6J mice aged 15 weeks in order to determine its effect on hepatic redox state. Mice were divided into 3 groups: ∆9-THC (N = 10), treated with 10 mg/kg body weight ∆9-THC daily; VCtrl (N = 10), treated with vehicle [1:1:18, cremophor EL® (polyoxyl 35 castor oil)/ethanol/saline]; Ctrl (N = 10), treated with saline. Animals were injected ip twice a day with 5 mg/kg body weight for 10 days. Lipid peroxidation, protein carbonylation and DNA oxidation were used as biomarkers of oxidative stress. The endogenous antioxidant defenses analyzed were glutathione (GSH) levels as well as enzyme activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase (GPx) in liver homogenates. The levels of mRNA of the cannabinoid receptors CB1 and CB2 were also monitored. Treatment with ∆9-THC did not produce significant changes in oxidative stress markers or in mRNA levels of CB1 and CB2 receptors in the liver of mice, but attenuated the increase in the selenium-dependent GPx activity (Δ9-THC: 8%; VCtrl: 23% increase) and the GSH/oxidized GSH ratio (Δ9-THC: 61%; VCtrl: 96% increase), caused by treatment with the vehicle. Δ9-THC administration did not show any harmful effects on lipid peroxidation, protein carboxylation or DNA oxidation in the healthy liver of mice but attenuated unexpected effects produced by the vehicle containing ethanol/cremophor EL®.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interstitial fibrosis and tubular atrophy (IF/TA) are the most common cause of renal graft failure. Chronic transplant glomerulopathy (CTG) is present in approximately 1.5-3.0% of all renal grafts. We retrospectively studied the contribution of CTG and recurrent post-transplant glomerulopathies (RGN) to graft loss. We analyzed 123 patients with chronic renal allograft dysfunction and divided them into three groups: CTG (N = 37), RGN (N = 21), and IF/TA (N = 65). Demographic data were analyzed and the variables related to graft function identified by statistical methods. CTG had a significantly lower allograft survival than IF/TA. In a multivariate analysis, protective factors for allograft outcomes were: use of angiotensin-converting enzyme inhibitor (ACEI; hazard ratio (HR) = 0.12, P = 0.001), mycophenolate mofetil (MMF; HR = 0.17, P = 0.026), hepatitis C virus (HR = 7.29, P = 0.003), delayed graft function (HR = 5.32, P = 0.016), serum creatinine ≥1.5 mg/dL at the 1st year post-transplant (HR = 0.20, P = 0.011), and proteinuria ≥0.5 g/24 h at the 1st year post-transplant (HR = 0.14, P = 0.004). The presence of glomerular damage is a risk factor for allograft loss (HR = 4.55, P = 0.015). The presence of some degree of chronic glomerular damage in addition to the diagnosis of IF/TA was the most important risk factor associated with allograft loss since it could indicate chronic active antibody-mediated rejection. ACEI and MMF were associated with better outcomes, indicating that they might improve graft survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively). Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effect of pulsed ultrasound therapy (UST) and antibothropic polyvalent antivenom (PAV) on the regeneration of mouse extensor digitorum longus muscle following damage by Bothrops jararacussu venom. Animals (Swiss male and female mice weighing 25.0 ± 5.0 g; 5 animals per group) received a perimuscular injection of venom (1 mg/kg) and treatment with UST was started 1 h later (1 min/day, 3 MHz, 0.3 W/cm², pulsed mode). Three and 28 days after injection, muscles were dissected and processed for light microscopy. The venom caused complete degeneration of muscle fibers. UST alone and combined with PAV (1.0 mL/kg) partially protected these fibers, whereas muscles receiving no treatment showed disorganized fascicules and fibers with reduced diameter. Treatment with UST and PAV decreased the effects of the venom on creatine kinase content and motor activity (approximately 75 and 48%, respectively). Sonication of the venom solution immediately before application decreased the in vivo and ex vivo myotoxic activities (approximately 60 and 50%, respectively). The present data show that UST counteracts some effects of B. jararacussu venom, causing structural and functional improvement of the regenerated muscle after venom injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and ofXpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to investigate the protective effect of Lawesson's reagent, an H2S donor, against alendronate (ALD)-induced gastric damage in rats. Rats were pretreated with saline or Lawesson's reagent (3, 9, or 27 µmol/kg, po) once daily for 4 days. After 30 min, gastric damage was induced by ALD (30 mg/kg) administration by gavage. On the last day of treatment, the animals were killed 4 h after ALD administration. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malondialdehyde (MDA), glutathione (GSH), proinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1β], and myeloperoxidase (MPO). Other groups were pretreated with glibenclamide (5 mg/kg, ip) or with glibenclamide (5 mg/kg, ip)+diazoxide (3 mg/kg,ip). After 1 h, 27 µmol/kg Lawesson's reagent was administered. After 30 min, 30 mg/kg ALD was administered. ALD caused gastric damage (63.35±9.8 mm2); increased levels of TNF-α, IL-1β, and MDA (2311±302.3 pg/mL, 901.9±106.2 pg/mL, 121.1±4.3 nmol/g, respectively); increased MPO activity (26.1±3.8 U/mg); and reduced GSH levels (180.3±21.9 µg/g). ALD also increased cystathionine-γ-lyase immunoreactivity in the gastric mucosa. Pretreatment with Lawesson's reagent (27 µmol/kg) attenuated ALD-mediated gastric damage (15.77±5.3 mm2); reduced TNF-α, IL-1β, and MDA formation (1502±150.2 pg/mL, 632.3±43.4 pg/mL, 78.4±7.6 nmol/g, respectively); lowered MPO activity (11.7±2.8 U/mg); and increased the level of GSH in the gastric tissue (397.9±40.2 µg/g). Glibenclamide alone reversed the gastric protective effect of Lawesson's reagent. However, glibenclamide plus diazoxide did not alter the effects of Lawesson's reagent. Our results suggest that Lawesson's reagent plays a protective role against ALD-induced gastric damage through mechanisms that depend at least in part on activation of ATP-sensitive potassium (KATP) channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on genome damage, lipid peroxidation, and levels of glutathione peroxidase (GPX) in newborns after transplacental exposure to xenobiotics are rare and insufficient for risk assessment. The aim of the current study was to analyze, in an animal model, transplacental genotoxicity, lipid peroxidation, and detoxification disturbances caused by the following drugs commonly prescribed to pregnant women: paracetamol, fluconazole, 5-nitrofurantoin, and sodium valproate. Genome damage in dams and their newborn pups transplacentally exposed to these drugs was investigated using the in vivo micronucleus (MN) assay. The drugs were administered to dams intraperitoneally in three consecutive daily doses between days 12 and 14 of pregnancy. The results were correlated, with detoxification capacity of the newborn pups measured by the levels of GPX in blood and lipid peroxidation in liver measured by malondialdehyde (HPLC-MDA) levels. Sodium valproate and 5-nitrofurantoin significantly increased MN frequency in pregnant dams. A significant increase in the MN frequency of newborn pups was detected for all drugs tested. This paper also provides reference levels of MDA in newborn pups, according to which all drugs tested significantly lowered MDA levels of newborn pups, while blood GPX activity dropped significantly only after exposure to paracetamol. The GPX reduction reflected systemic oxidative stress, which is known to occur with paracetamol treatment. The reduction of MDA in the liver is suggested to be an unspecific metabolic reaction to the drugs that express cytotoxic, in particular hepatotoxic, effects associated with oxidative stress and lipid peroxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of an adventure sprint race (ASR) on T-cell proliferation, leukocyte count and muscle damage was evaluated. Seven young male runners completed an ASR in the region of Serra do Espinhaço, Brazil. The race induced a strong leukocytosis (6.22±2.04×103 cells/mm3 beforevs 14.81±3.53×103 cells/mm3after the race), marked by a significant increase of neutrophils and monocytes (P<0.05), but not total lymphocytes, CD3+CD4+ or CD3+CD8+ cells. However, the T-cell proliferative response to mitogenic stimulation was increased (P=0.025) after the race, which contradicted our hypothesis that ASR, as a high-demand competition, would inhibit T-cell proliferation. A positive correlation (P=0.03, r=0.79) was observed between the proliferative response of lymphocytes after the race and the time to complete the race, suggesting that the proliferative response was dependent on exercise intensity. Muscle damage was evident after the race by increased serum levels of aspartate amino transferase (24.99±8.30 vs 50.61±15.76 U/L, P=0.003). The results suggest that humoral factors and substances released by damaged muscle may be responsible for lymphocyte activation, which may be involved in muscle recovery and repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.