884 resultados para VOLUME FRACTION
Resumo:
We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.
Resumo:
An improved mesoscopic model is presented for simulating the drying of porous media. The aim of this model is to account for two scales simultaneously: the scale of the whole product and the scale of the heterogeneities of the porous medium. The innovation of this method is the utilization of a new mass-conservative scheme based on the Control-Volume Finite-Element (CV-FE) method that partitions the moisture content field over the individual sub-control volumes surrounding each node within the mesh. Although the new formulation has potential for application across a wide range of transport processes in heterogeneous porous media, the focus here is on applying the model to the drying of small sections of softwood consisting of several growth rings. The results conclude that, when compared to a previously published scheme, only the new mass-conservative formulation correctly captures the true moisture content evolution in the earlywood and latewood components of the growth rings during drying.
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
Background: High-flow nasal cannulae (HFNC) create positive oropharyngeal airway pressure but it is unclear how their use affects lung volume. Electrical impedance tomography (EIT) allows assessment of changes in lung volume by measuring changes in lung impedance. Primary objectives were to investigate the effects of HFNC on airway pressure (Paw) and end-expiratory lung volume (EELV), and to identify any correlation between the two. Secondary objectives were to investigate the effects of HFNC on respiratory rate (RR), dyspnoea, tidal volume and oxygenation; and the interaction between body mass index (BMI) and EELV. Methods: Twenty patients prescribed HFNC post-cardiac surgery were investigated. Impedance measures, Paw, PaO2/FiO2 ratio, RR and modified Borg scores were recorded first on low flow oxygen (nasal cannula or Hudson face mask) and then on HFNC. Results: A strong and significant correlation existed between Paw and end-expiratory lung impedance (EELI) (r=0.7, p<0.001). Compared with low flow oxygen, HFNC significantly increased EELI by 25.6% (95% CI 24.3, 26.9) and Paw by 3.0 cmH2O (95% CI 2.4, 3.7). RR reduced by 3.4 breaths per minute (95% CI 1.7, 5.2) with HFNC use, tidal impedance variation increased by 10.5% (95% CI 6.1, 18.3) and PaO2/FiO2 ratio improved by 30.6 mmHg (95% CI 17.9, 43.3). HFNC improved subjective dyspnoea scoring (p=0.023). Increases in EELI were significantly influenced by BMI, with larger increases associated with higher BMIs (p<0.001). Conclusions: This study suggests that HFNC improve dyspnoea and oxygenation by increasing both EELV and tidal volume, and are most beneficial in patients with higher BMIs.
Resumo:
INTRODUCTION: Workforce planning for first aid and medical coverage of mass gatherings is hampered by limited research. In particular, the characteristics and likely presentation patterns of low-volume mass gatherings of between several hundred to several thousand people are poorly described in the existing literature. OBJECTIVES: This study was conducted to: 1. Describe key patient and event characteristics of medical presentations at a series of mass gatherings, including events smaller than those previously described in the literature; 2. Determine whether event type and event size affect the mean number of patients presenting for treatment per event, and specifically, whether the 1:2,000 deployment rule used by St John Ambulance Australia is appropriate; and 3. Identify factors that are predictive of injury at mass gatherings. METHODS: A retrospective, observational, case-series design was used to examine all cases treated by two Divisions of St John Ambulance (Queensland) in the greater metropolitan Brisbane region over a three-year period (01 January 2002-31 December 2004). Data were obtained from routinely collected patient treatment forms completed by St John officers at the time of treatment. Event-related data (e.g., weather, event size) were obtained from event forms designed for this study. Outcome measures include: total and average number of patient presentations for each event; event type; and event size category. Descriptive analyses were conducted using chi-square tests, and mean presentations per event and event type were investigated using Kruskal-Wallis tests. Logistic regression analyses were used to identify variables independently associated with injury presentation (compared with non-injury presentations). RESULTS: Over the three-year study period, St John Ambulance officers treated 705 patients over 156 separate events. The mean number of patients who presented with any medical condition at small events (less than or equal to 2,000 attendees) did not differ significantly from that of large (>2,000 attendees) events (4.44 vs. 4.67, F = 0.72, df = 1, 154, p = 0.79). Logistic regression analyses indicated that presentation with an injury compared with non-injury was independently associated with male gender, winter season, and sporting events, even after adjusting for relevant variables. CONCLUSIONS: In this study of low-volume mass gatherings, a similar number of patients sought medical treatment at small (<2,000 patrons) and large (>2,000 patrons) events. This demonstrates that for low-volume mass gatherings, planning based solely on anticipated event size may be flawed, and could lead to inappropriate levels of first-aid coverage. This study also highlights the importance of considering other factors, such as event type and patient characteristics, when determining appropriate first-aid resourcing for low-volume events. Additionally, identification of factors predictive of injury presentations at mass gatherings has the potential to significantly enhance the ability of event coordinators to plan effective prevention strategies and response capability for these events.
Resumo:
This thesis presents the outcomes of a comprehensive research study undertaken to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The knowledge created is expected to contribute to a greater understanding of urban stormwater quality and thereby enhance the design of stormwater quality treatment systems. The research study was undertaken based on selected urban catchments in Gold Coast, Australia. The research methodology included field investigations, laboratory testing, computer modelling and data analysis. Both univariate and multivariate data analysis techniques were used to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The rainfall characteristics investigated included average rainfall intensity and rainfall duration whilst catchment characteristics included land use, impervious area percentage, urban form and pervious area location. The catchment scale data for the analysis was obtained from four residential catchments, including rainfall-runoff records, drainage network data, stormwater quality data and land use and land cover data. Pollutants build-up samples were collected from twelve road surfaces in residential, commercial and industrial land use areas. The relationships between rainfall characteristics, catchment characteristics and urban stormwater quality were investigated based on residential catchments and then extended to other land uses. Based on the influence rainfall characteristics exert on urban stormwater quality, rainfall events can be classified into three different types, namely, high average intensity-short duration (Type 1), high average intensity-long duration (Type 2) and low average intensity-long duration (Type 3). This provides an innovative approach to conventional modelling which does not commonly relate stormwater quality to rainfall characteristics. Additionally, it was found that the threshold intensity for pollutant wash-off from urban catchments is much less than for rural catchments. High average intensity-short duration rainfall events are cumulatively responsible for the generation of a major fraction of the annual pollutants load compared to the other rainfall event types. Additionally, rainfall events less than 1 year ARI such as 6- month ARI should be considered for treatment design as they generate a significant fraction of the annual runoff volume and by implication a significant fraction of the pollutants load. This implies that stormwater treatment designs based on larger rainfall events would not be feasible in the context of cost-effectiveness, efficiency in treatment performance and possible savings in land area needed. This also suggests that the simulation of long-term continuous rainfall events for stormwater treatment design may not be needed and that event based simulations would be adequate. The investigations into the relationship between catchment characteristics and urban stormwater quality found that other than conventional catchment characteristics such as land use and impervious area percentage, other catchment characteristics such as urban form and pervious area location also play important roles in influencing urban stormwater quality. These outcomes point to the fact that the conventional modelling approach in the design of stormwater quality treatment systems which is commonly based on land use and impervious area percentage would be inadequate. It was also noted that the small uniformly urbanised areas within a larger mixed catchment produce relatively lower variations in stormwater quality and as expected lower runoff volume with the opposite being the case for large mixed use urbanised catchments. Therefore, a decentralised approach to water quality treatment would be more effective rather than an "end-of-pipe" approach. The investigation of pollutants build-up on different land uses showed that pollutant build-up characteristics vary even within the same land use. Therefore, the conventional approach in stormwater quality modelling, which is based solely on land use, may prove to be inappropriate. Industrial land use has relatively higher variability in maximum pollutant build-up, build-up rate and particle size distribution than the other two land uses. However, commercial and residential land uses had relatively higher variations of nutrients and organic carbon build-up. Additionally, it was found that particle size distribution had a relatively higher variability for all three land uses compared to the other build-up parameters. The high variability in particle size distribution for all land uses illustrate the dissimilarities associated with the fine and coarse particle size fractions even within the same land use and hence the variations in stormwater quality in relation to pollutants adsorbing to different sizes of particles.
Resumo:
We describe the population pharmacokinetics of an acepromazine (ACP) metabolite (2-(1-hydroxyethyl)promazine) (HEPS) in horses for the estimation of likely detection times in plasma and urine. Acepromazine (30 mg) was administered to 12 horses, and blood and urine samples were taken at frequent intervals for chemical analysis. A Bayesian hierarchical model was fitted to describe concentration-time data and cumulative urine amounts for HEPS. The metabolite HEPS was modelled separately from the parent ACP as the half-life of the parent was considerably less than that of the metabolite. The clearance ($Cl/F_{PM}$) and volume of distribution ($V/F_{PM}$), scaled by the fraction of parent converted to metabolite, were estimated as 769 L/h and 6874 L, respectively. For a typical horse in the study, after receiving 30 mg of ACP, the upper limit of the detection time was 35 hours in plasma and 100 hours in urine, assuming an arbitrary limit of detection of 1 $\mu$g/L, and a small ($\approx 0.01$) probability of detection. The model derived allowed the probability of detection to be estimated at the population level. This analysis was conducted on data collected from only 12 horses, but we assume that this is representative of the wider population.
Resumo:
It is generally accepted that there is a close relationship between property investment and construction activity. The construction sector plays a crucial role in economic development, especially for a developing nation such as Malaysia. However, the volume of new properties added to the property market is only a fraction of the total volume of the property market. Is the conventional assumption of the relationship between property investment and construction supported by empirical data? This paper revisits the tripartite relationships between economic growths, property investment and construction activities with official Malaysian 2000Q1-2010Q4 quarterly time series data. The Granger causality tests are used to establish the causality runs from the GDP to the value of property transactions, and the growth of construction activities to GDP growth. The result is expected to be useful for policymakers and industrial practitioners in formulating industrial policies and corporate strategies.
Resumo:
OBJECTIVE: Childhood-onset type 1 diabetes is associated with neurocognitive deficits, but there is limited evidence to date regarding associated neuroanatomical brain changes and their relationship to illness variables such as age at disease onset. This report examines age-related changes in volume and T2 relaxation time (a fundamental parameter of magnetic resonance imaging that reflects tissue health) across the whole brain. RESEARCH DESIGN AND METHODS: Type 1 diabetes, N = 79 (mean age 20.32 ± 4.24 years), and healthy control participants, N = 50 (mean age 20.53 ± 3.60 years). There were no substantial group differences on socioeconomic status, sex ratio, or intelligence quotient. RESULTS: Regression analyses revealed a negative correlation between age and brain changes, with decreasing gray matter volume and T2 relaxation time with age in multiple brain regions in the type 1 diabetes group. In comparison, the age-related decline in the control group was small. Examination of the interaction of group and age confirmed a group difference (type 1 diabetes vs. control) in the relationship between age and brain volume/T2 relaxation time. CONCLUSIONS: We demonstrated an interaction between age and group in predicting brain volumes and T2 relaxation time such that there was a decline in these outcomes in type 1 diabetic participants that was much less evident in control subjects. Findings suggest the neurodevelopmental pathways of youth with type 1 diabetes have diverged from those of their healthy peers by late adolescence and early adulthood but the explanation for this phenomenon remains to be clarified.
Resumo:
Volume measurements are useful in many branches of science and medicine. They are usually accomplished by acquiring a sequence of cross sectional images through the object using an appropriate scanning modality, for example x-ray computed tomography (CT), magnetic resonance (MR) or ultrasound (US). In the cases of CT and MR, a dividing cubes algorithm can be used to describe the surface as a triangle mesh. However, such algorithms are not suitable for US data, especially when the image sequence is multiplanar (as it usually is). This problem may be overcome by manually tracing regions of interest (ROIs) on the registered multiplanar images and connecting the points into a triangular mesh. In this paper we describe and evaluate a new discreet form of Gauss’ theorem which enables the calculation of the volume of any enclosed surface described by a triangular mesh. The volume is calculated by summing the vector product of the centroid, area and normal of each surface triangle. The algorithm was tested on computer-generated objects, US-scanned balloons, livers and kidneys and CT-scanned clay rocks. The results, expressed as the mean percentage difference ± one standard deviation were 1.2 ± 2.3, 5.5 ± 4.7, 3.0 ± 3.2 and −1.2 ± 3.2% for balloons, livers, kidneys and rocks respectively. The results compare favourably with other volume estimation methods such as planimetry and tetrahedral decomposition.
Resumo:
A system is described for calculating volume from a sequence of multiplanar 2D ultrasound images. Ultrasound images are captured using a video digitising card (Hauppauge Win/TV card) installed in a personal computer, and regions of interest transformed into 3D space using position and orientation data obtained from an electromagnetic device (Polbemus, Fastrak). The accuracy of the system was assessed by scanning 10 water filled balloons (13-141 ml), 10 kidneys (147 200 ml) and 16 fetal livers (8 37 ml) in water using an Acuson 128XP/10 (5 MHz curvilinear probe). Volume was calculated using the ellipsoid, planimetry, tetrahedral and ray tracing methods and compared with the actual volume measured by weighing (balloons) and water displacement (kidneys and livers). The mean percentage error for the ray tracing method was 0.9 ± 2.4%, 2.7 ± 2.3%, 6.6 ± 5.4% for balloons, kidneys and livers, respectively. So far the system has been used clinically to scan fetal livers and lungs, neonate brain ventricles and adult prostate glands.
Resumo:
A new system is described for estimating volume from a series of multiplanar 2D ultrasound images. Ultrasound images are captured using a personal computer video digitizing card and an electromagnetic localization system is used to record the pose of the ultrasound images. The accuracy of the system was assessed by scanning four groups of ten cadaveric kidneys on four different ultrasound machines. Scan image planes were oriented either radially, in parallel or slanted at 30 C to the vertical. The cross-sectional images of the kidneys were traced using a mouse and the outline points transformed to 3D space using the Fastrak position and orientation data. Points on adjacent region of interest outlines were connected to form a triangle mesh and the volume of the kidneys estimated using the ellipsoid, planimetry, tetrahedral and ray tracing methods. There was little difference between the results for the different scan techniques or volume estimation algorithms, although, perhaps as expected, the ellipsoid results were the least precise. For radial scanning and ray tracing, the mean and standard deviation of the percentage errors for the four different machines were as follows: Hitachi EUB-240, −3.0 ± 2.7%; Tosbee RM3, −0.1 ± 2.3%; Hitachi EUB-415, 0.2 ± 2.3%; Acuson, 2.7 ± 2.3%.
Resumo:
Sixteen formalin-fixed foetal livers were scanned in vitro using a new system for estimating volume from a sequence of multiplanar 2D ultrasound images. Three different scan techniques were used (radial, parallel and slanted) and four volume estimation algorithms (ellipsoid, planimetry, tetrahedral and ray tracing). Actual liver volumes were measured by water displacement. Twelve of the sixteen livers also received x-ray computed tomography (CT) and magnetic resonance (MR) scans and the volumes were calculated using voxel counting and planimetry. The percentage accuracy (mean ± SD) was 5.3 ± 4.7%, −3.1 ± 9.6% and −0.03 ± 9.7% for ultrasound (radial scans, ray volumes), MR and CT (voxel counting) respectively. The new system may be useful for accurately estimating foetal liver volume in utero.
Resumo:
In this video, words describing socially awkward conversations float around an animated cloud of gas. A cosmic stock music track accompanies the words. This work examines processes of signification. It emphasizes multiplicity and disconnection as fundamental and generative operations in making meaning. By playing with the simultaneity of internal monologues and external conversations, it draws attention to the seams, gaps and slippages that occur in signifying acts.