980 resultados para University of South Carolina Salkehatchie Campus
Resumo:
This layer is a georeferenced raster image of the historic paper manuscript map: Battery Wagner, Morris Isld., Francis D. Lee, Capt. Engrs. ; Langdon Cheves, Asst. Engr. in charge of work ; drawn by F.W. Bornemann, C.S. Engr. Office. It was drawn Nov 26, 1863. Scale [1:480]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the South Carolina State Plane Coordinate System (in Meters) (Fipszone 3900). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as Fort dimensions and structures, landscape of area surrounding Fort, drainage, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps of the Civil War from the Harvard Map Collection. Many items from this selection are from a collection of maps deposited by the Military Order of the Loyal Legion of the United States Commandery of the State of Massachusetts (MOLLUS) in the Harvard Map Collection in 1938. These maps typically portray both natural and manmade features, in particular showing places of military importance. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.
Resumo:
This data set describes the distribution of a total of 90 plant species growing on field margins of an agricultural landscape in the Haean-myun catchment in South Korea. We conducted our survey between July and August 2011 in 100 sampling plots, covering the whole catchment. In each plot we measured three environmental variables: slope, width of the field margin, and management type (i.e. "managed" for field margins that had signs of management activities from the ongoing season such as cutting or spraying herbicides and "unmanaged" for field margins that had been left untouched in the season). For the botanical survey each plot was sampled using three subplots of one square meter per subplot; subplots were 4 m apart from each other. In each subplot, we estimated three different vegetation characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of observed species) and species abundance (i.e. the number of observed individuals / species). We calculated the percentage of the non-farmed habitats by creating buffer zones of 100, 200, 300, 400 and 500 m radii around each plot using data provided by (Seo et al. 2014). Non-farmed habitats included field margins, fallows, forest, riparian areas, pasture and grassland.
Resumo:
We investigated changes in tropical climate and vegetation cover associated with abrupt climate change during Heinrich Event 1 (HE1, ca. 17.5 ka BP) using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). Tropical South American and African pollen records suggest that the cooling of the North Atlantic Ocean during HE1 influenced the tropics through a southward shift of the rain belt. In this study, we simulated the HE1 by applying a freshwater perturbation to the North Atlantic Ocean. The resulting slowdown of the Atlantic Meridional Overturning Circulation was followed by a temperature seesaw between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rain belt. The shift and the response pattern of the tropical vegetation around the Atlantic Ocean were more pronounced in the CCSM3 than in the UVic ESCM simulation. For tropical South America, opposite changes in tree and grass cover were modeled around 10° S in the CCSM3 but not in the UVic ESCM. In tropical Africa, the grass cover increased and the tree cover decreased around 15° N in the UVic ESCM and around 10° N in the CCSM3. In the CCSM3 model, the tree and grass cover in tropical Southeast Asia responded to the abrupt climate change during the HE1, which could not be found in the UVic ESCM. The biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory. Original image in color
Resumo:
Campus viewed from the northwest, with Haven Hall and University Hall in foreground. Publication information: [Chicago, Ill.] : Everts & Stewart, 1874.
Resumo:
Engraving, 19 x 19 cm. Original painting by J.F. Cropsey dated 1856. Publication information: New York : R. Leggett, 1856
Resumo:
Campus view from the northeast after oil painting by J.F. Cropsey utilized as letterhead
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory. Observatory from northwest with pine trees and summer garden. On verso: A.L. Colton, Photographer, Ann Arbor, Michigan. Views of the State University a Specialty.
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory.
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory. Stereoscopic photograph showing the 1868 director's residence addition. James C. Watson (wearing top hat) is seen with a telescope on a tripod; his wife, Annette, is standing at the porch. (Source: A Creation of His Own: Tappan's Detroit Observatory by Patricia S. Whitesell) On verso: Views at University of Michigan, Ann Arbor
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory.
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory.
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory.
Resumo:
Richard Bull, architect. Known at various times as Detroit Observatory, Campus Observatory, Old Observatory. On verso: Photographed in 1887 by Colton of '89