990 resultados para United States. National Aeronautics and Space Administration. Educational Affairs Division.
Resumo:
[1] We have compared the spectral aerosol optical depth (AOD, tau lambda) and aerosol fine mode fraction (AFMF) of Collection 004 (C004) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) on board National Aeronautics and Space Administration's (NASA) Terra and Aqua platforms with that obtained from Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), India for the period 2001-2005. The spatially-averaged (0.5 degrees x 0.5 degrees centered at AERONET sunphotometer) MODIS Level-2 aerosol parameters (10 km at nadir) were compared with the temporally averaged AERONET-measured AOD (within +/- 30 minutes of MODIS overpass). We found that MODIS systematically overestimated AOD during the pre-monsoon season (March to June, known to be influenced by dust aerosols). The errors in AOD at 0.66 mu m were correlated with the apparent reflectance at 2.1 mu m (rho*(2.1)) which MODIS C004 uses to estimate the surface reflectance in the visible channels (rho(0.47) = rho*(2.1)/ 4, rho(0.66) = rho*(2.1)/ 2). The large errors in AOD (Delta tau(0.66) > 0.3) are found to be associated with the higher values of rho*(2.1) (0.18 to 0.25), where the uncertainty in the ratios of reflectance is large (Delta rho(0.66) +/- 0.04, Delta rho(0.47) +/- 0.02). This could have resulted in lower surface reflectance, higher aerosol path radiance and thus lead to overestimation in AOD. While MODIS-derived AFMF has binary distribution (1 or 0) with too low (AFMF < 0.2) during dust-loading period, and similar to 1 for the rest of the retrievals, AERONET showed range of values (0.4 to 0.9). The errors in tau(0.66) were also high in the scattering angle range 110 degrees - 140 degrees, where the optical effects of nonspherical dust particles are different from that of spherical particles.
Synchronized Oscillations During Cooperative Feature Lining in a Cortical Model of Visual Perception
Resumo:
A neural network model of synchronized oscillations in visual cortex is presented to account for recent neurophysiological findings that such synchronization may reflect global properties of the stimulus. In these experiments, synchronization of oscillatory firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred between neurons separated by several cortical columns (several mm of cortex) when these neurons shared some receptive field preferences specific to the stimuli. These results were obtained for single bar stimuli and also across two disconnected, but colinear, bars moving in the same direction. Our model and computer simulations obtain these synchrony results across both single and double bar stimuli using different, but formally related, models of preattentive visual boundary segmentation and attentive visual object recognition, as well as nearest-neighbor and randomly coupled models.
Resumo:
A neural network model of synchronized oscillator activity in visual cortex is presented in order to account for recent neurophysiological findings that such synchronization may reflect global properties of the stimulus. In these recent experiments, it was reported that synchronization of oscillatory firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred between neurons separated by several cortical columns (several mm of cortex) when these neurons shared some receptive field preferences specific to the stimuli. These results were obtained not only for single bar stimuli but also across two disconnected, but colinear, bars moving in the same direction. Our model and computer simulations obtain these synchrony results across both single and double bar stimuli. For the double bar case, synchronous oscillations are induced in the region between the bars, but no oscillations are induced in the regions beyond the stimuli. These results were achieved with cellular units that exhibit limit cycle oscillations for a robust range of input values, but which approach an equilibrium state when undriven. Single and double bar synchronization of these oscillators was achieved by different, but formally related, models of preattentive visual boundary segmentation and attentive visual object recognition, as well as nearest-neighbor and randomly coupled models. In preattentive visual segmentation, synchronous oscillations may reflect the binding of local feature detectors into a globally coherent grouping. In object recognition, synchronous oscillations may occur during an attentive resonant state that triggers new learning. These modelling results support earlier theoretical predictions of synchronous visual cortical oscillations and demonstrate the robustness of the mechanisms capable of generating synchrony.
Resumo:
We present initial results from observations and numerical analyses aimed at characterizing the main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between 2012 October and 2013 February using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research Telescope. The object's intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 μm that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of Q CN <1.5 × 1023 mol s-1, from which we infer a water production rate of Q_H_2O100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveals that it is dynamically linked to the ~155 Myr old Lixiaohua asteroid family. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and made possible by the generous financial support of the W. M. Keck Foundation, the Magellan Telescopes located at Las Campanas Observatory, Chile, and the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Resumo:
Se trata de una entrevista realizada a Alfonso Sáiz-López, un científico castellano manchego que trabaja para la NASA (National Aeronautics and Space Administration) y que trata la importancia de las ciencias en el ámbito de la educación desde sus primeros niveles hasta la educación superior .