880 resultados para Trees -- Breeding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Question: Is stomatal regulation specific for climate and tree species, and does it reveal species-specific responses to drought? Is there a link to vegetation dynamics? Location: Dry inner alpine valley, Switzerland Methods: Stomatal aperture (θE) of Pinus sylvestris, Quercus pubescens, Juniperus communis and Picea abies were continuously estimated by the ratio of measured branch sap flow rates to potential transpiration rates (adapted Penman-Monteith single leaf approach) at 10-min intervals over four seasons. Results: θE proved to be specific for climate and species and revealed distinctly different drought responses: Pinus stomata close disproportionately more than neighbouring species under dry conditions, but has a higher θE than the other species when weather was relatively wet and cool. Quercus keeps stomata more open under drought stress but has a lower θE under humid conditions. Juniperus was most drought-tolerant, whereas Picea stomata close almost completely during summer. Conclusions: The distinct microclimatic preferences of the four tree species in terms of θE strongly suggest that climate (change) is altering tree physiological performances and thus species-specific competitiveness. Picea and Pinus currently live at the physiological limit of their ability to withstand increasing temperature and drought intensities at the sites investigated, whereas Quercus and Juniperus perform distinctly better. This corresponds, at least partially, with regional vegetation dynamics: Pinus has strongly declined, whereas Quercus has significantly increased in abundance in the past 30 years. We conclude that θE provides an indication of a species' ability to cope with current and predicted climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On Swiss rabbit breeding farms, group-housed does are usually kept singly for 12 days around parturition to avoid pseudograviclity, double litters and deleterious fighting for nests. After this isolation phase there is usually an integration of new group members. Here we studied whether keeping the group composition stable would reduce agonistic interactions, stress levels and injuries when regrouping after the isolation phase. Does were kept in 12 pens containing 8 rabbits each. In two trials, with a total of 24 groups, the group composition before and after the 12 days isolation period remained the same (treatment: stable, S) in 12 groups. In the other 12 groups two or three does were replaced after the isolation phase by unfamiliar does (treatment: mixed, M). Does of S-groups had been housed together for one reproduction cycle. One day before and on days 2, 4 and 6 after regrouping, data on lesions, stress levels (faecal corticosterone metabolites, FCM) and agonistic interactions were collected and statistically analysed using mixed effects models. Lesion scores and the frequency of agonistic interactions were highest on day 2 after regrouping and thereafter decrease in both groups. There was a trend towards more lesions in M-groups compared to S-groups. After regrouping FCM levels were increased in M-groups, but not in S-groups. Furthermore, there was a significant interaction of treatment and experimental day on agonistic interactions. Thus, the frequency of biting and boxing increased more in M-groups than in S-groups. These findings indicate that group stability had an effect on agonistic interactions, stress and lesions. (C) 2012 Elsevier B.V. All rights reserved.