942 resultados para Trapping
Resumo:
Atmosphärische Aerosole haben einen starken Einfluss auf das Klima, der bisher nur grundlegend verstanden ist und weiterer Forschung bedarf. Das atmosphärische Verhalten der Aerosolpartikel hängt maßgeblich von ihrer Größe und chemischen Zusammensetzung ab. Durch Reflexion, Absorption und Streuung des Sonnenlichtes verändern sie den Strahlungshaushalt der Erde direkt und durch ihre Einflussnahme auf die Wolkenbildung indirekt. Besonders gealterte, stark oxidierte organische Aerosole mit großem Sauerstoff-zu-Kohlenstoff-Verhältnis wirken als effektive Wolkenkondensationskeime. Neben primären Aerosolpartikeln, die direkt partikelförmig in die Atmosphäre gelangen, spielen sekundäre Aerosolpartikel eine große Rolle, die aus Vorläufergasen in der Atmosphäre entstehen. Aktuelle Forschungsergebnisse legen nahe, dass kurzkettige aliphatische Amine bei Nukleationsprozessen beteiligt sind und somit die Partikelneubildung vielerorts mitsteuern. Um die Rolle von Aminen in der Atmosphäre besser erforschen und industrielle Emissionen kontrollieren zu können, bedarf es einer zuverlässigen Methode zur Echtzeitquantifizierung gasförmiger Amine mit hoher Zeitauflösung und niedriger Nachweisgrenze.rnDas hochauflösende Flugzeit-Aerosolmassenspektrometer (HR-ToF-AMS) bietet die Möglichkeit, atmosphärische Partikel in Echtzeit zu analysieren. Dabei werden Größe, Menge und grundlegende chemische Zusammensetzung erfasst. Anorganische Aerosolbestandteile können eindeutig zugeordnet werden. Es ist jedoch kaum möglich, einzelne organische Verbindungen in den komplizierten Massenspektren atmosphärischer Aerosole zu identifizieren und quantifizieren.rnIn dieser Arbeit wird atmosphärisches Aerosol untersucht, das im Westen Zyperns während der CYPHEX-Kampagne mit einem HR-ToF-AMS gemessen wurde. An diesem Standort ist vor allem stark gealtertes Aerosol vorzufinden, das aus Zentral- und Westeuropa stammt. Lokale Einflüsse spielen fast keine Rolle. Es wurde eine durchschnittliche Massenkonzentration von 10,98 μg/m3 gefunden, zusammengesetzt aus 57 % Sulfat, 30 % organischen Bestandteilen, 12 % Ammonium, < 1 % Nitrat und < 1 % Chlorid, bezogen auf das Gewicht. Der Median des vakuum-aerodynamischen Durchmessers betrug 446,25 nm. Es wurde sehr acides Aerosol gefunden, dessen anorganische Bestandteile weitgehend der Zusammensetzung von Ammoniumhydrogensulfat entsprachen. Tag-Nacht-Schwankungen in der Zusammensetzung wurden beobachtet. Die Sulfatkonzentration und die Acidität zeigten tagsüber Maxima und nachts Minima. Konzentrationsschwankungen an Nitrat und Chlorid zeigten einen weniger ausgeprägten Rhythmus, Maxima fallen aber immer mit Minima der Sulfatkonzentration, Aerosolacidität und Umgebungstemperatur zusammen. Organische Aerosolbestandteile entsprachen stark gealtertem, schwerflüchtigem oxidiertem organischem Aerosol. Es wurde eine interne Mischung der Partikel beobachtet, die ebenfalls meist bei alten Aerosolen auftritt.rnUm mit dem HR-ToF-AMS auch einzelne organische Verbindungen identifizieren und quantifizieren zu können, wurde eine Methode entwickelt, mit der man Amine der Gasphase selektiv in künstlich erzeugte Phosphorsäurepartikel aufnimmt und so für die HR-ToF-AMS-Messung zugänglich macht. Dadurch kombiniert man die Vorteile der Online-Messung des HR-ToF-AMS mit den Vorteilen klassischer Offline-Probenahmen. So können in Echtzeit sehr einfache Massenspektren gemessen werden, in denen störende Komponenten abgetrennt sind, während die Analyten eindeutig identifiziert werden können. Systeme dieser Art wurden GTRAP-AMS (Gaseous compound TRapping in Artificially-generated Particles – Aerosol Mass Spectrometry) genannt. Kalibrierungen für (Mono)Methylamin, Dimethylamin, Trimethylamin, Diethylamin und Triethylamin ergaben Nachweisgrenzen im ppt-Bereich bei einer Zeitauflösung von 3 min. Kammerexperimente zur Aminemission von Pflanzen zeigten eine gute Übereinstimmung des neu entwickelten Systems mit einer Gasdiffusionsabscheider-Offline-Probenahme und anschließender ionenchromatographischer Analyse. Beide Methoden zeigten Reaktionen der Pflanzen auf eine Veränderung der Lichtverhältnisse, während erhöhte Ozonkonzentrationen die Aminemission nicht veränderten. Die GTRAP-AMS-Methode eignet sich bereits für die Messung von Umgebungsluftkonzentrationen an einigen Orten, für die meisten Orte reicht die Nachweisgrenze allerdings noch nicht aus. Die Technik könnte bereits zur Echtzeitkontrolle industrieller Abgasemissionen eingesetzt werden.
Resumo:
Il presente lavoro di tesi si inserisce in un progetto di ricerca volto alla sintesi di nuovi complessi di metalli di transizione per lo sviluppo di catalizzatori bifunzionali metallo-legante da impiegare in reazioni di catalisi omogenea, in particolare in reazioni redox quali idrogenazione e deidrogenazione attraverso il trasferimento di idrogeno. Il mio progetto ha riguardato la messa a punto della sintesi di complessi di Ru(0) che combinano leganti ciclopentadienonici e carbeni N-eterociclici e la sintesi dei corrispondenti complessi cationici per protonazione. Inoltre, è stato sintetizzato e caratterizzato un nuovo complesso cationico attraverso la metilazione del corrispettivo complesso neutro. I complessi sintetizzati sono stati utilizzati come precursori di catalizzatori nella riduzione tramite trasferimento di idrogeno del 4-fluoroacetofenone, valutandone l’attività catalitica in relazione a leganti, additivi e controioni. Allo scopo di delineare qualche ipotesi sul meccanismo di reazione sono stati effettuati diversi studi sulla reattività dei complessi impiegati in catalisi, in particolare usando la piridina come agente di “trapping”. Infine, è stato condotto uno studio preliminare dell’attività catalitica dei complessi sintetizzati nell’ossidazione di benzilalcol a benzaldeide. The present work is part of a research project that involves the study of new ruthenium-based transition metal complexes in order to develop new metal-ligand bifunctional catalysts to employ in homogeneous catalytic systems, in particular in redox reactions such as hydrogenation and dehydrogenation through hydrogen transfer. My project is focused on the optimization of the synthesis of Ru(0) complexes that combines different ligands as tetraphenylcyclopentadienone and N-heterocyclic carbenes and the synthesis of the corresponding cationic complexes by protonation. Furthermore, it is reported the synthesis and characterization of a new cationic complex obtained by methylation of the corresponding neutral complex. All the prepared complexes were employed as catalyst precursors in the transfer hydrogenation of 4-fluoroacetophenone and their performances were investigated in relation to the type of ligands, additives and counterions. The reactivity of these ruthenium complexes was also investigated with the aim of delineate some hypothesis on the reaction mechanism, in particular employing pyridine as a trapping agent. Finally, preliminary studies on the oxidation of benzyl alcohol have been carried out.
Resumo:
The primary goal of this work is related to the extension of an analytic electro-optical model. It will be used to describe single-junction crystalline silicon solar cells and a silicon/perovskite tandem solar cell in the presence of light-trapping in order to calculate efficiency limits for such a device. In particular, our tandem system is composed by crystalline silicon and a perovskite structure material: metilammoniumleadtriiodide (MALI). Perovskite are among the most convenient materials for photovoltaics thanks to their reduced cost and increasing efficiencies. Solar cell efficiencies of devices using these materials increased from 3.8% in 2009 to a certified 20.1% in 2014 making this the fastest-advancing solar technology to date. Moreover, texturization increases the amount of light which can be absorbed through an active layer. Using Green’s formalism it is possible to calculate the photogeneration rate of a single-layer structure with Lambertian light trapping analytically. In this work we go further: we study the optical coupling between the two cells in our tandem system in order to calculate the photogeneration rate of the whole structure. We also model the electronic part of such a device by considering the perovskite top cell as an ideal diode and solving the drift-diffusion equation with appropriate boundary conditions for the silicon bottom cell. We have a four terminal structure, so our tandem system is totally unconstrained. Then we calculate the efficiency limits of our tandem including several recombination mechanisms such as Auger, SRH and surface recombination. We focus also on the dependence of the results on the band gap of the perovskite and we calculare an optimal band gap to optimize the tandem efficiency. The whole work has been continuously supported by a numerical validation of out analytic model against Silvaco ATLAS which solves drift-diffusion equations using a finite elements method. Our goal is to develop a simpler and cheaper, but accurate model to study such devices.
Resumo:
Although it is well established that stromal intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and vascular cell adhesion molecule-1 (VCAM-1) mediate lymphocyte recruitment into peripheral lymph nodes (PLNs), their precise contributions to the individual steps of the lymphocyte homing cascade are not known. Here, we provide in vivo evidence for a selective function for ICAM-1 > ICAM-2 > VCAM-1 in lymphocyte arrest within noninflamed PLN microvessels. Blocking all 3 CAMs completely inhibited lymphocyte adhesion within PLN high endothelial venules (HEVs). Post-arrest extravasation of T cells was a 3-step process, with optional ICAM-1-dependent intraluminal crawling followed by rapid ICAM-1- or ICAM-2-independent diapedesis and perivascular trapping. Parenchymal motility of lymphocytes was modestly reduced in the absence of ICAM-1, while ICAM-2 and alpha4-integrin ligands were not required for B-cell motility within follicles. Our findings highlight nonredundant functions for stromal Ig family CAMs in shear-resistant lymphocyte adhesion in steady-state HEVs, a unique role for ICAM-1 in intraluminal lymphocyte crawling but redundant roles for ICAM-1 and ICAM-2 in lymphocyte diapedesis and interstitial motility.
Resumo:
Recent demographic changes have made settlement patterns in the Canadian Arctic increasingly urban. Iqaluit, capital of Canada’s newest territory, Nunavut, is home to the largest concentration of Inuit and non-Inuit populations in the Canadian North. Despite these trends, Inuit cultural identity continues to rest heavily on the perception that to learn how to be authentically Inuit (or to be a better person), a person needs to spend time out on the land (and sea) hunting, fishing, trapping, and camping. Many Inuit also maintain a rather negative view of urban spaces in the Arctic, identifying them as places where Inuit values and practices have been eclipsed by Qallunaat (‘‘white people’’) ones. Some Inuit have even gone so far as to claim that a person is no longer able to be Inuit while living in towns like Iqaluit. This article examines those aspects of Canadian Inuit identity, culture, and tradition that disfavor the acceptance of an urban cultural identity. Based on ethnographic research conducted on Baffin Island in the mid 1990s and early 2000s, the many ways Iqaluit and outpost camp Inuit express the differences and similarities between living on the land and living in town are described. Then follows an examination of how the contrast of land and town is used in the rhetoric of Inuit politicians and leaders. Finally, a series of counterexamples are presented that favor the creation of an authentic urban Inuit identity in the Arctic, including recent attempts on the part of the Nunavut Territorial Government to make education and wage employment in the region more reliant on Inuit Qaujimajatuqangit, or Inuit traditional knowledge.1
Resumo:
Carnitine is an amino acid derivative that plays a key role in energy metabolism. Endogenous carnitine is found in its free form or esterified with acyl groups of several chain lengths. Quantification of carnitine and acylcarnitines is of particular interest for screening for research and metabolic disorders. We developed a method with online solid-phase extraction coupled to high-performance liquid chromatography and tandem mass spectrometry to quantify carnitine and three acylcarnitines with different polarity (acetylcarnitine, octanoylcarnitine, and palmitoylcarnitine). Plasma samples were deproteinized with methanol, loaded on a cation exchange trapping column and separated on a reversed-phase C8 column using heptafluorobutyric acid as an ion-pairing reagent. Considering the endogenous nature of the analytes, we quantified with the standard addition method and with external deuterated standards. Solid-phase extraction and separation were achieved within 8 min. Recoveries of carnitine and acylcarnitines were between 98 and 105 %. Both quantification methods were equally accurate (all values within 84 to 116 % of target concentrations) and precise (day-to-day variation of less than 18 %) for all carnitine species and concentrations analyzed. The method was used successfully for determination of carnitine and acylcarnitines in different human samples. In conclusion, we present a method for simultaneous quantification of carnitine and acylcarnitines with a rapid sample work-up. This approach requires small sample volumes and a short analysis time, and it can be applied for the determination of other acylcarnitines than the acylcarnitines tested. The method is useful for applications in research and clinical routine.
Resumo:
The treatment of intracranial aneurysms is changing as endovascular obliteration possibilities and long-term results are being published in regard to outcome. However, not all aneurysms are amenable to direct endovascular or surgical treatment. In such situations, a high flow bypass for flow preservation can be considered as indirect treatment alternative, enabling a trapping of the aneurysm or occlusion of the feeding artery. We present the case history of a 57 year-old patient suffering of a recurrent giant intracranial carotid aneurysm. The aneurysm could be excluded using a new cerebral high-flow bypass technique for which no temporary occlusion of any intracranial vessels is required. This technique reduces the risks of perioperative neurological complications.
Resumo:
During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.
Resumo:
Oxidative stress is a critical component of the injury response to hypoxia-ischemia (HI) in the neonatal brain, and this response is unique and at times paradoxical to that seen in the mature brain. Previously, we showed that copper-zinc superoxide-dismutase (SOD1) over-expression is not beneficial to the neonatal mouse brain with HI injury, unlike the adult brain with ischemic injury. However, glutathione peroxidase 1 (GPx1) over-expression is protective to the neonatal mouse brain with HI injury. To further test the hypothesis that an adequate supply of GPx is critical to protection from HI injury, we crossed SOD1 over-expressing mice (hSOD-tg) with GPx1 over-expressing mice (hGPx-tg). Resulting litters contained wild-type (wt), hGPx-tg, hSOD-tg and hybrid hGPx-tg/hSOD-tg pups, which were subjected to HI at P7. Confirming previous results, the hGPx-tg mice had reduced injury compared to both Wt and hSOD-tg littermates. Neonatal mice over-expressing both GPx1 and SOD1 also had less injury compared to wt or hSOD-tg alone. A result of oxidative stress after neonatal HI is a decrease in the concentration of reduced (i.e. antioxidant-active) glutathione (GSH). In this study, we tested the effect of systemic administration of alpha-lipoic acid on levels of GSH in the cortex after HI. Although GSH levels were restored by 24h after HI, injury was not reduced compared to vehicle-treated mice. We also tested two other pharmacological approaches to reducing oxidative stress in hSOD-tg and wild-type littermates. Both the specific inhibitor of neuronal nitric oxide synthase, 7-nitroindazole (7NI), and the spin-trapping agent alpha-phenyl-tert-butyl-nitrone (PBN) did not reduce HI injury, however. Taken together, these results imply that H2O2 is a critical component of neonatal HI injury, and GPx1 plays an important role in the defense against this H2O2 and is thereby neuroprotective.
Resumo:
Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.
Resumo:
PURPOSE: To demonstrate the feasibility of direct angioscopic visualization of an optional inferior vena cava (IVC) filter in situ and during retrieval. MATERIALS AND METHODS: Angioscopy was used for direct visualization of optional IVC filters in six sheep. Cavograms were obtained before the filters were retrieved. After successful filter retrieval, segmental IVC perfusion was performed to evaluate filter retrieval-related damage to the IVC wall. Therefore, all branch vessels were ligated before the IVC segment was flushed with normal saline solution until it was fully distended. Then, the inflow was terminated and the IVC segment observed for deflation. Subsequently, the IVC was harvested en bloc, dissected, and inspected macroscopically. RESULTS: The visibility of IVC filters at angioscopy was excellent. During the retrieval procedure, filter collapse and retraction into the sheath were clearly demonstrated. Angioscopy provided additional information to that obtained with cavography, demonstrating adherent material in three filters. Three filters in place for more than 2 months could not be retrieved because the filter legs were incorporated into the IVC wall. After filter retrieval, there was no perforation at segmental IVC perfusion. At macroscopic inspection of the IVC lumen, a small piece of detached endothelium was found in one animal. CONCLUSION: Angioscopy enabled the direct evaluation of optional IVC filters in situ and during retrieval. Compared with cavography, angioscopy provided additional information about the filter in situ and the retrieval procedure. Future applications of this technique could include studies of filter migration, compression, and clot-trapping efficacy.
Resumo:
The bacterium Listeria monocytogenes causes meningoencephalitis in humans. In rodents, listeriosis is associated with granulomatous lesions in the liver and the spleen, but not with meningoencephalitis. Here, infant rats were infected intracisternally to generate experimental listeric meningoencephalitis. Dose-dependent effects of intracisternal inoculation with L. monocytogenes on survival and activity were noted; 10(4) L. monocytogenes organisms induced a self-limiting brain infection. Bacteria invaded the basal meninges, chorioid plexus and ependyme, spread to subependymal tissue and hippocampus, and disappeared by day 7. This was paralleled by recruitment and subsequent disappearance of macrophages expressing inducible nitric oxide synthase (iNOS) and nitrotyrosine accumulation, an indication of nitric oxide (NO.) production. Treatment with the spin-trapping agent alpha-phenyl-tert-butyl nitrone (PBN) dramatically increased mortality and led to bacterial numbers in the brain 2 orders of magnitude higher than in control animals. Treatment with the selective iNOS inhibitor L-N(6)-(1-iminoethyl)-lysine (L-NIL) increased mortality to a similar extent and led to 1 order of magnitude higher bacterial counts in the brain, compared with controls. The numbers of bacteria that spread to the spleen and liver did not significantly differ among L-NIL-treated, PBN-treated, and control animals. Thus, the infant rat brain is able to mobilize powerful antilisterial mechanisms, and both reactive oxygen and NO. contribute to Listeria growth control.
Resumo:
The exotic emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was first discovered in North America in southeastern Michigan, USA, and Windsor, Ontario, Canada in 2002. Significant ash (Fraxinus spp.) mortality has been caused in areas where this insect has become well established, and new infestations continue to be discovered in several states in the United States and in Canada. This beetle is difficult to detect when it invades new areas or occurs at low density. Girdled trap tree and ground surveys have been important tools for detecting emerald ash borer populations, and more recently, purple baited prism traps have been used in detection efforts. Girdled trap trees were found to be more effective than purple prism traps at detecting emerald ash borer as they acted as sinks for larvae in an area of known low density emerald ash borer infestation. The canopy condition of the trap trees was not predictive of whether they were infested or not, indicating that ground surveys may not be effective for detection in an area of low density emerald ash borer population. When landing rates of low density emerald ash borer populations were monitored on non-girdled ash trees, landing rates were higher on larger, open grown trees with canopies that contain a few dead branches. As a result of these studies, we suggest that the threshold for emerald ash borer detection using baited purple prism traps hung at the canopy base of trees is higher than for girdled trap trees. In addition, detection of developing populations of EAB may be possible by selectively placing sticky trapping surfaces on non-girdled trap trees that are the larger and more open grown trees at a site.
Resumo:
A re-examination of seismic time-lapse data from the Teal South field provides support for a previously proposed model of regional pressure decline and the associated liberation of gas from nearby reservoirs due to the production from the only reservoir among them that is under production. The use of a specific attribute, instantaneous amplitude, and a series of time slices, however, provides increased detail in understanding fluid migration into or out of the reservoirs, and the path taken by pressure changes across faults. The regional decrease of pressure due to production in one reservoir has dramatic effects in nearby untapped reservoirs, one of which appears to exhibit evidence for the escape, and possible re-trapping nearby, of hydrocarbons from a spill point. The influx of water into the producing reservoir is also evidenced by a decrease in amplitude at one end of the oil-water contact.
Boron nitride nanotubes : synthesis, characterization, functionalization, and potential applications
Resumo:
Boron nitride nanotubes (BNNTs) are structurally similar to carbon nanotubes (CNTs), but exhibit completely different physical and chemical properties. Thus, BNNTs with various interesting properties may be complementary to CNTs and provide an alternative perspective to be useful in different applications. However, synthesis of high quality of BNNTs is still challenging. Hence, the major goals of this research work focus on the fundamental study of synthesis, characterizations, functionalization, and explorations of potential applications. In this work, we have established a new growth vapor trapping (GVT) approach to produce high quality and quantity BNNTs on a Si substrate, by using a conventional tube furnace. This chemical vapor deposition (CVD) approach was conducted at a growth temperature of 1200 °C. As compared to other known approaches, our GVT technique is much simpler in experimental setup and requires relatively lower growth temperatures. The as-grown BNNTs are fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Energy Filtered Mapping, Raman spectroscopy, Fourier Transform Infra Red spectroscopy (FTIR), UV-Visible (UV-vis) absorption spectroscopy, etc. Following this success, the growth of BNNTs is now as convenient as growing CNTs and ZnO nanowires. Some important parameters have been identified to produce high-quality BNNTs on Si substrates. Furthermore, we have identified a series of effective catalysts for patterned growth of BNNTs at desirable or pre-defined locations. This catalytic CVD technique is achieved based on our finding that MgO, Ni or Fe are the good catalysts for the growth of BNNTs. The success of patterned growth not only explains the role of catalysts in the formation of BNNTs, this technique will also become technologically important for future device fabrication of BNNTs. Following our success in controlled growth of BNNTs on substrates, we have discovered the superhydrophobic behavior of these partially vertically aligned BNNTs. Since BNNTs are chemically inert, resistive to oxidation up to ~1000°C, and transparent to UV-visible light, our discovery suggests that BNNTs could be useful as self-cleaning, insulating and protective coatings under rigorous chemical and thermal conditions. We have also established various approaches to functionalize BNNTs with polymeric molecules and carbon coatings. First, we showed that BNNTs can be functionalized by mPEG-DSPE (Polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a bio-compatible polymer that helps disperse and dissolve BNNTs in water solution. Furthermore, well-dispersed BNNTs in water can be cut from its original length of >10µm to(>20hrs). This success is an essential step to implement BNNTs in biomedical applications. On the other hand, we have also succeeded to functionalize BNNTs with various conjugated polymers. This success enables the dispersion of BNNTs in organic solvents instead of water. Our approaches are useful for applications of BNNTs in high-strength composites. In addition, we have also functionalized BNNTs with carbon decoration. This was performed by introducing methane (CH4) gas into the growth process of BNNT. Graphitic carbon coatings can be deposited on the side wall of BNNTs with thicknesses ranging from 2 to 5 nm. This success can modulate the conductivity of pure BNNTs from insulating to weakly electrically conductive. Finally, efforts were devoted to explore the application of the wide bandgap BNNTs in solar-blind deep UV (DUV) photo-detectors. We found that photoelectric current generated by the DUV light was dominated in the microelectrodes of our devices. The contribution of photocurrent from BNNTs is not significant if there is any. Implication from these preliminary experiments and potential future work are discussed.