965 resultados para Transforming Growth Factor Beta
Resumo:
Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.
Resumo:
Recently, we demonstrated that circulating levels of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) are increased in sepsis (Yano, K., P.C. Liaw, J.M. Mullington, S.C. Shih, H. Okada, N. Bodyak, P.M. Kang, L. Toltl, B. Belikoff, J. Buras, et al. 2006. J. Exp. Med. 203:1447-1458). Moreover, enhanced VEGF/Flk-1 signaling was shown to contribute to sepsis morbidity and mortality. We tested the hypothesis that PlGF also contributes to sepsis outcome. In mouse models of endotoxemia and cecal ligation puncture, the genetic absence of PlGF or the systemic administration of neutralizing anti-PlGF antibodies resulted in higher mortality compared with wild-type or immunoglobulin G-injected controls, respectively. The increased mortality associated with genetic deficiency of PlGF was reversed by adenovirus (Ad)-mediated overexpression of PlGF. In the endotoxemia model, PlGF deficiency was associated with elevated circulating levels of VEGF, induction of VEGF expression in the liver, impaired cardiac function, and organ-specific accentuation of barrier dysfunction and inflammation. Mortality of endotoxemic PlGF-deficient mice was increased by Ad-mediated overexpression of VEGF and was blocked by expression of soluble Flt-1. Collectively, these data suggest that up-regulation of PlGF in sepsis is an adaptive host response that exerts its benefit, at least in part, by attenuating VEGF signaling.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Epidermal growth factor (EGF) is excreted in a high concentration in human saliva and modulates the growth and differentiation of various cancer cells. To elucidate the molecular mechanisms by which EGF affects oral cancer growth and invasion, we analyzed the Matrigel invasion activity of the cultured oral cancer cell line. Cells grown under the influence of EGF were subjected to Matrigel invasion assays and cells grown in the absence of EGF were used as controls. Gelatin-zymography and Northern blot analyses quantified the invasiveness and tumorigenicity. Chloramphenicol acetyltransferase assay (CAT assay) determined the EGF stimulation of matrix metalloproteinase (MMP) expression. EGF increased the number of cells penetrating a Matrigel membrane. Gelatin-zymography and Northern blot analysis revealed that MMP9 and Ets1 expressions correlated with EGF but MMP2 was not changed. a transient transfection assay revealed that EGF increased the promoter activities of the MMP9 genes in HSC3 and SAS cells. These results suggest that EGF increases the invasion activity of oral cancer cells partly by increasing MMP9.
Resumo:
Vascular endothelial growth factor (VEGF) is an important modulator of angiogenesis, and has been implicated in the pathology of a number of conditions, including age-related macular degeneration (AMD), diabetic retinopathy, and cancer. AMD is a progressive disease of the macula and the third major cause of blindness worldwide. If not treated appropriately, AMD can progress rapidly, causing legal blindness within months of the second eye becoming affected. Until recently, the treatment options for AMD have been limited, with photodynamic therapy (PDT) the mainstay treatment. Although PDT is effective at slowing disease progression, it rarely results in improved vision. Pegaptanib and ranibizumab are both anti-VEGF therapies licensed for the treatment of neovascular AMD in Europe; however, these drugs are not yet available in Japan. This article reviews the available clinical data on anti-VEGF therapies for the treatment of neovascular AMD in Europe, and considers the future of this exciting therapy.
Resumo:
BACKGROUND/AIM: Both steatosis and insulin resistance have been linked to accelerated fibrosis in chronic hepatitis C. Connective tissue growth factor (CTGF) plays a major role in extracellular matrix production in fibrotic disorders including cirrhosis, and its expression is stimulated in vitro by insulin and glucose. We hypothesized that CTGF may link steatosis, insulin resistance and fibrosis. METHODS: We included 153 chronic hepatitis C patients enrolled in the Swiss Hepatitis C Cohort Study and for whom a liver biopsy and plasma samples were available. CTGF expression was assessed quantitatively by immunohistochemistry. In 94 patients (57 with genotypes non-3), plasma levels of glucose, insulin and leptin were also measured. CTGF synthesis was investigated by immunoblotting on LX-2 stellate cells. RESULTS: Connective tissue growth factor expression was higher in patients with steatosis (P=0.039) and in patients with fibrosis (P=0.008) than those without these features. CTGF levels were neither associated with insulinaemia or with glycaemia, nor with inflammation. By multiple regression analysis, CTGF levels were independently associated with steatosis, a past history of alcohol abuse, plasma leptin and HCV RNA levels; when only patients with genotypes non-3 were considered, CTGF levels were independently associated with a past history of alcohol abuse, plasma leptin levels and steatosis. Leptin stimulated CTGF synthesis in LX-2 cells. CONCLUSIONS: In patients with chronic hepatitis C and steatosis, CTGF may promote fibrosis independently of inflammation. CTGF may link steatosis and fibrosis via increased leptin levels.
Resumo:
BACKGROUND: Patients taking immunosuppressants after transplantation may require intestinal surgery. Mycophenolate mofetil (MMF) has been found to impair the healing of colonic anastomoses in rats. This study examined whether insulin-like growth factor (IGF) I prevents MMF impairment of anastomotic healing. METHODS: Sixty-three rats were divided into three groups (MMF, MMF/IGF and control). Animals underwent a sigmoid colon anastomosis with a 6/0 suture, and were killed on days 2, 4 and 6 after surgery. Investigations included bursting pressure measurement, morphometric analysis, and assessment of mucosal proliferation by 5-bromo-2'-deoxyuridine and Ki67 immunohistochemistry of the anastomoses. RESULTS: The leak rate was three of 21, one of 20 and two of 20 in the MMF, MMF/IGF-I and control groups respectively. Anastomotic bursting pressures were significantly lower in the MMF group than in the control group on days 2 and 4, but there was no significant difference by day 6. Values in the MMF/IGF-I and control groups were similar. Colonic crypt depth was significantly reduced in MMF-treated animals on days 2 and 4, but this impairment was attenuated by IGF-I on day 4. Similarly, IGF-I reduced the negative impact of MMF on mucosal proliferation on days 2 and 6. CONCLUSION: Exogenous IGF-I improves some aspects of MMF-impaired anastomotic healing.
Resumo:
The insulin-like growth factor (IGF) is a major anabolic regulator in articular cartilage. The IGF-binding proteins (IGFBPs) are increased during osteoarthritis (OA), but the function of the later proteins remains unknown. In general, the IGFBPs are pluripotential effectors capable of IGF regulation and of acting on their own to control key cell functions, including survival and proliferation. The independent functions are often associated with their cell location, and therefore this study explores the distribution of IGFBP-2 and IGFBP-3 in articular chondrocytes. Immunohistochemistry was used to localize IGFBP-2 in normal human articular cartilage. Bovine chondrocytes were used for subcellular fractionation (hypotonic cell lysis) under nonreducing conditions and nuclear purification (centrifugation on sucrose cushions). Cell fraction markers and IGFBPs were assayed in the subcellular fractions by Western immunoblot. The IHC results showed association of IGFBP-2 with chondrocytes, but not with the nuclei. Subcellular fractionation of isolated chondrocytes yielded intact nuclei as assessed at the light microscopic level; the nuclear marker histone H1 was exclusively associated with this fraction. More than 90% of the cytoplasmic marker GAPDH and all the detectable IGFBP-2 were in the cytoplasmic fraction. Immunoreactive IGFBP-3 was found in the cytoplasmic and peri-nuclear/nuclear fractions. Chondrocytes contain intracellular IGFBP-2 and IGFBP-3 but only IGFBP-3 is associated with nuclei. This suggests the hypothesis that the actions of these IGFBPs in articular cartilage extend beyond the classic modulation of IGF receptor action.
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.
Resumo:
In ongoing chronic rejection after lung transplantation, alveolar interstitial fibrosis develops. However, little is known about the mechanisms involved. In order to investigate these mechanisms, expression of extracellular matrix molecules (ECM) (undulin, decorin, tenascin, laminin, and fibronectin) and cytokines [transforming growth factor (TGF)-beta 1, TGF-beta 3, platelet-derived growth factor (PDGF), and PDGF receptor] were semiquantitatively evaluated in chronically rejected lung allografts, using standard immunohistochemical techniques. Additionally, the presence of macrophages was analysed. The present study demonstrates an increased infiltration of macrophages with a concomitant upregulation of cytokines (TGF-beta 1, TGF-beta 3, and PDGF) and an increased deposition of ECM in chronic lung rejection. These cytokines have an important role in the stimulation of fibroblasts which are a major source of ECM. Upregulated expression of ECM in the alveolar interstitial space leads to alveolar malfunction by thickening of the wall and, thus, is one of the causative factors of respiratory dysfunction in chronic lung graft rejection.
Resumo:
BACKGROUND AND AIM OF THE STUDY: Recent studies have suggested placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) as promising new biomarkers for risk stratification in acute coronary syndromes (ACS). However, little is known about the influence of percutaneous coronary intervention (PCI) on circulating PlGF and VEGF levels. METHODS: Thirty-five patients with ACS, 27 patients with stable coronary artery disease (sCAD), and nine healthy controls were enrolled in the study. Although all patients with ACS and 14 patients with stable angina pectoris underwent PCI, 13 patients with coronary artery disease required no revascularization (sCAD). PlGF and VEGF plasma concentrations were measured by immunoassay during and at the end of PCI and coronary angiography. RESULTS: Plasma PlGF levels were comparable in patients with ACS and sCAD on admission. Although coronary angiography or heparin alone did not alter PlGF and VEGF levels, immediately after PCI a dramatic increase was seen in circulating PlGF and a decrease in VEGF, which was independent of the clinical presentation of the patients, heparin administration, or the angiographic procedure itself, but was associated with the extent of coronary artery disease and the amount of the injected contrast media. In-vitro experiments revealed that radiocontrast agents induced the release of PlGF from endothelial cells without altering PlGF mRNA expression. CONCLUSION: Patients undergoing PCI exhibit an increase in circulating PlGF, probably caused by posttranslational modifications of radiocontrast agents in endothelial cells. Therefore, analysis of plasma PlGF and VEGF levels may consider the timing of blood sampling with respect to PCI and contrast media exposure.
Resumo:
BACKGROUND: Clinical observations are suggesting accelerated granulation tissue formation in traumatic wounds treated with vacuum-assisted closure (VAC). Aim of this study was to determine the impact of VAC therapy versus alternative Epigard application on local inflammation and neovascularization in traumatic soft tissue wounds. METHODS: Thirty-two patients with traumatic wounds requiring temporary coverage (VAC n = 16; Epigard n = 16) were included. At each change of dressing, samples of wound fluid and serum were collected (n = 80). The cytokines interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 were measured by ELISA. Wound biopsies were examined histologically for inflammatory cells and degree of neovascularization present. RESULTS: All cytokines were found to be elevated in wound fluids during both VAC and Epigard treatment, whereas serum concentrations were negligible or not detectable. In wound fluids, significantly higher IL-8 (p < 0.001) and VEGF (p < 0.05) levels were detected during VAC therapy. Furthermore, histologic examination revealed increased neovascularization (p < 0.05) illustrated by CD31 and von Willebrand factor immunohistochemistry in wound biopsies of VAC treatment. In addition, there was an accumulation of neutrophils as well as an augmented expression of VEGF (p < 0.005) in VAC wound biopsies. CONCLUSION: This study suggests that VAC therapy of traumatic wounds leads to increased local IL-8 and VEGF concentrations, which may trigger accumulation of neutrophils and angiogenesis and thus, accelerate neovascularization.
Resumo:
Expression of connective tissue growth factor (CTGF), a member of the CCN gene family, is known to be significantly induced by mechanical stress. We have therefore investigated whether other members of the CCN gene family, including Cyr61 and Nov, might reveal a similar stress-dependent regulation. Fibroblasts growing under stressed conditions within a three-dimensional collagen gel showed at least a 15 times higher level of Cyr61 mRNA than cells growing under relaxed conditions. Upon relaxation, the decline of the Cyr61 mRNA to a lower level occurred within 2 h, and was thus quicker than the response of CTGF. The regulation was fully reversible when stress was reapplied. Thus, Cyr61 represents another typical example of a stress-responsive gene. The level of the Nov mRNA was low in the stressed state, but increased in the relaxed state. This CCN gene therefore shows an inverted regulation relative to that of Cyr61 and CTGF. Inhibition of protein kinases by means of staurosporine suppressed the stress-induced expression of Cyr61 and CTGF. Elevated levels of cAMP induced by forskolin mimicked the effects of relaxation on the regulation of Cyr61, CTGF and Nov. Thus, adenylate cyclase as well as one or several protein kinases might be involved in the mechanoregulation of these CCN genes.
Resumo:
With the rapid increase in approaches to pro- or anti-angiogenic therapy, new and effective methodologies for administration of cell-bound growth factors will be required. We sought to develop the natural hydrogel matrix fibrin as platform for extensive interactions and continuous signaling by the vascular morphogen ephrin-B2 that normally resides in the plasma membrane and requires multivalent presentation for ligation and activation of Eph receptors on apposing endothelial cell surfaces. Using fibrin and protein engineering technology to induce multivalent ligand presentation, a recombinant mutant ephrin-B2 receptor binding domain was covalently coupled to fibrin networks at variably high densities. The ability of fibrin-bound ephrin-B2 to act as ligand for endothelial cells was preserved, as demonstrated by a concomitant, dose-dependent increase of endothelial cell binding to engineered ephrin-B2-fibrin substrates in vitro. The therapeutic relevance of ephrin-B2-fibrin implant matrices was demonstrated by a local angiogenic response in the chick embryo chorioallontoic membrane evoked by the local and prolonged presentation of matrix-bound ephrin-B2 to tissue adjacing the implant. This new knowledge on biomimetic fibrin vehicles for precise local delivery of membrane-bound growth factor signals may help to elucidate specific biological growth factor function, and serve as starting point for development of new treatment strategies.