919 resultados para Transform infrared spectroscopy
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, we report on the synthesis of MgMoO4 crystals by oxide mixed method. The powder was calcined at 1100 degrees C for 4h and analyzed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Field emission gun scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and Photoluminescence (PL) measurement. XRD analyses revealed that the MgMoO4 powders crystallize in a monoclinic structure and are free secondary phases. UV-vis technique was employed to determine the optical band gap of this material. MgMoO4 crystals exhibit an intense PL emission at room temperature with maximum peak at 579 nm (yellow region) when excited by 350 nm wavelength at room temperature.
Resumo:
Ordered mesoporous, highly luminescent SiO2 particles have been synthesized by spray pyrolysis from solutions containing tetraethylorthosilicate (TEOS), Eu(NO3)3.6H2O, and cetyltrimethylammonium bromide (CTAB) as structure-directing agents. The 1,10-phenantroline (Phen) molecules were coordinated in a post-synthesis step by a simple wet impregnation method. In addition, other matrices were also prepared by the encapsulation of europium complex Eu(fod)3 (where fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato) into mesoporous silica, and then the Phen molecules were encapsulated by different impregnation steps, after which the luminescence properties were investigated. The obtained materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Powders with polydisperse spherical grains were obtained, displaying an ordered hexagonal array of mesochannels. Luminescence results revealed that Phen molecules had been successfully coordinated as an additional ligand in the Eu(fod)3 complex into the channels of the mesoporous particles without disrupting the structure.
iCONVERT: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm-1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Darunavir, a protease inhibitor used in the treatment of HIV infection, presents few methods for its determination in pharmaceuticals. Infrared (IR) spectroscopy offers the possibility of obtaining spectra relatively quickly, providing interesting information, analytically, qualitatively or quantitatively. Capillary electrophoresis (CE) performs separations of high efficiency in shorter time with reagents and samples in small quantity. These two methods are cost-benefitted when we evaluate the green level and the cost of analysis. Faster and cheaper methods without generating organic waste by IR and CE for the quantification of darunavir were developed and validated, focusing socioeconomic impact of analytical decisions. If the cost of acquisition, maintenance, production, analysis and conditioning of drugs and pharmaceuticals is high, consequently the price of this product in the market will be higher and it cannot be accessible to the patient. Treatment failure not only affects the quality of life of patients, but also contributes significantly to the economic burden of the health system. In this context there is a tool called Analysis of the Life Cycle, which comes to make us think in a multidimensional way focusing the whole, the parts and especially the interaction among the parts of a system.
Resumo:
We studied the effect of silica surface on luminescence properties of terbium complex by spectroscopy characterization, where microparticles of mesoporous silica type MSU-X was prepared. We used silica with different surface: calcined, washed, functionalized with 3- aminopropyl-triethoxysilane (APTES), and 3-glycidoxypropyl-trimethoxysilane (GPTMS); impregnated with Tb3+-glutamic acid complex. The obtained materials were characterized by scanning electron microscopy, porosity measurements, small-angle X-ray scattering, as structural characterization; Fourier transform infrared and luminescence spectroscopy, as spectroscopy characterization. Finally, we observed that functional groups at the silica surface lead to changes on luminescent properties of the final materials. The observed shift of the absorption and emission bands can be assigned to the effect of the functional groups of mesoporous silica.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
The benzoxaxine resin is a new class of thermoset phenolic resin, which is presenting, in the lasts decades, a great application in the aircraft industry due mainly to its excellent mechanical and thermal properties. This resin associates the mechanical properties of epoxy resin with the thermal and flame retardant properties of phenolic resin. In this context, they are considered polymers of high performance and they are excellent candidates to replace the current thermoset matrices used in the processing of high performance composites. Thus, in this study nanostructured composites Benzoxazine/CNT were produced at different concentrations of functionalized and non-functionalized CNT (0,1%; 0,5% and 1,0% w/w). The thermal stability of the benzoxazine resin and its nanostructured composites was studied using thermogravimetry (TGA) and degradation kinetic model Ozawa-Wall-Flynn (O-W-F). The thermal characterization also included differential scanning calorimetry (DSC) and dynamic-mechanical analysis, infrared spectroscopy with Fourier transform (FTIR) and scanning electron microscopy (SEM).The introduction of non-functionalized CNT at low concentrations resulted in nanostructured composites with better thermal properties in relation to the neat resin. For all cases, however, the dispersion of CNT in the matrix was ineffective